Skip to content →

Tag: simples

coalgebras and non-geometry 2

Last time we
have seen that the _coalgebra of distributions_ of an affine smooth
variety is the direct sum (over all points) of the dual to the etale
local algebras which are all of the form $\mathbb{C}[[
x_1,\ldots,x_d ]] $ where $d $ is the dimension of the
variety. Generalizing this to _non-commutative_ manifolds, the first
questions are : “What is the analogon of the power-series algebra?” and
do all ‘points’ of our non-commutative manifold do have such local
algebras? Surely, we no longer expect the variables to commute, so a
non-commutative version of the power series algebra should be
$\mathbb{C} \langle \langle x_1,\ldots,x_d \rangle \rangle $,
the ring of formal power series in non-commuting variables. However,
there is still another way to add non-commutativity and that is to go
from an algebra to matrices over the algebra. So, in all we would expect
to be our _local algebras_ at points of our non-commutative manifold to
be isomorphic to $M_n(\mathbb{C} \langle \langle x_1,\ldots,x_d
\rangle \rangle) $ As to the second question : _qurves_ (that is,
the coordinate rings of non-commutative manifolds) do have such algebras
as local rings provided we take as the ‘points’ of the non-commutative
variety the set of all _simple_ finite dimensional representations of
the qurve. This is a consequence of the _tubular neighborhood theorem_
due to [Cuntz](http://wwwmath.uni-muenster.de/u/cuntz/cuntz.html) and
[Quillen](http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Quillen.html). In more details : If A is a qurve, then a simple
$n $-dimensional representation corresponds to an epimorphism
$\pi~:~A \rightarrow S = M_n(\mathbb{C}) $ and if we take
$\mathfrak{m}=Ker(\pi) $, then
$M=\mathfrak{m}/\mathfrak{m}^2 $ is an $S $-bimodule and
the $\mathfrak{m} $-adic completion of A is isomorphic to the
completed tensor-algebra $\hat{T}_S(M) \simeq M_n(\mathbb{C}
\langle \langle x_1,\ldots,x_d \rangle \rangle) $ In contrast with
the commutative case however where the dimension remains constant over
all points, here the numbers n and d can change from simple to simple.
For n this is clear as it gives the dimension of the simple
representation, but also d changes (it is the local dimension of the
variety classifying simple representations of the same dimension). Here
an easy example : Consider the skew group algebra $A =
\mathbb{C}[x] \star C_2 $ with the action given by sending $x
\mapsto -x $. Then A is a qurve and its center is
$\mathbb{C}[y] $ with $y=x^2 $. Over any point $y
\not= 0 $ there is a unique simple 2-dimensional representation of A
giving the local algebra $M_2(\mathbb{C}[[y]]) $. If
$y=0 $ the situation is more complicated as the local structure
of A is given by the algebra $\begin{bmatrix} \mathbb{C}[[y]] &
\mathbb{C}[[y]] \\ (y) & \mathbb{C}[[y]] \end{bmatrix} $ So, over
this point there are precisely 2 one-dimensional simple representations
corresponding to the maximal ideals $\mathfrak{m}_1 =
\begin{bmatrix} (y) & \mathbb{C}[[y]] \\ (y) & \mathbb{C}[[y]]
\end{bmatrix}~\qquad \text{and}~\qquad \mathfrak{m}_2 = \begin{bmatrix}
\mathbb{C}[[y]] & \mathbb{C}[[y]] \\ (y) & (y) \end{bmatrix} $ and
both ideals are idempotent, that is $\mathfrak{m}_i^2 =
\mathfrak{m}_i $ whence the corresponding bimodule $M_i =
0 $ so the local algebra in either of these two points is just
$\mathbb{C} $. Ok, so the comleted local algebra at each point
is of the form $M_n(\mathbb{C}\langle \langle x_1,\ldots,x_d \rangle
\rangle) $, but what is the corresponding dual coalgebra. Well,
$\mathbb{C} \langle \langle x_1,\ldots,x_d \rangle \rangle $ is
the algebra dual to the _cofree coalgebra_ on $V = \mathbb{C} x_1 +
\ldots + \mathbb{C}x_d $. As a vectorspace this is the
tensor-algebra $T(V) = \mathbb{C} \langle x_1,\ldots,x_d
\rangle $ with the coalgebra structure induced by the bialgebra
structure defined by taking all varaibales to be primitives, that is
$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i $. That is, the
coproduct on a monomial gives all different expressions $m_1 \otimes
m_2 $ such that $m_1m_2 = m $. For example,
$\Delta(x_1x_2) = x_1x_2 \otimes 1 + x_1 \otimes x_2 + 1 \otimes
x_1x_2 $. On the other hand, the dual coalgebra of
$M_n(\mathbb{C}) $ is the _matrix coalgebra_ which is the
$n^2 $-dimensional vectorspace $\mathbb{C}e_{11} + \ldots +
\mathbb{C}e_{nn} $ with comultiplication $\Delta(e_{ij}) =
\sum_k e_{ik} \otimes e_{kj} $ The coalgebra corresponding to the
local algebra $M_n(\mathbb{C}\langle \langle x_1,\ldots,x_d \rangle
\rangle) $ is then the tensor-coalgebra of the matrix coalgebra and
the cofree coalgebra. Having obtained the coalgebra at each point
(=simple representation) of our noncommutative manifold one might think
that the _coalgebra of non-commutative distributions_ should be the
direct sum of all this coalgebras, summed over all points, as in the
commutative case. But then we would forget about a major difference
between the commutative and the non-commutative world : distinct simples
can have non-trivial extensions! The mental picture one might have
about simples having non-trivial extensions is that these points lie
‘infinitesimally close’ together. In the $\mathbb{C}[x] \star
C_2 $ example above, the two one-dimensional simples have
non-trivial extensions so they should be thought of as a cluster of two
infinitesimally close points corresponding to the point $y=0 $
(that is, this commutative points splits into two non-commutative
points). Btw. this is the reason why non-commutative algebras can be
used to resolve commutative singularities (excessive tangents can be
split over several non-commutative points). While this is still pretty
harmless when the algebra is finite over its center (as in the above
example where only the two one-dimensionals have extensions), the
situation becomes weird over general qurves as ‘usually’ distinct
simples have non-trivial extensions. For example, for the free algebra
$\mathbb{C}\langle x,y \rangle $ this is true for all simples…
So, if we want to continue using this image of points lying closely
together this immediately means that non-commutative ‘affine’ manifolds
behave like compact ones (in fact, it turns out to be pretty difficult
to ‘glue’ together qurves into ‘bigger’ non-commutative manifolds, apart
from the quiver examples of [this old
paper](http://www.arxiv.org/abs/math.AG/9907136)). So, how to bring
this new information into our coalgebra of distributions? Well, let’s
repeat the previous argument not with just one point but with a set of
finitely many points. Then we have a _semi-simple algebra_ quotient
$\pi~:~A \rightarrow S = M_{n_1}(\mathbb{C}) \oplus \ldots \oplus
M_{n_k}(\mathb{C}) $ and taking again
$\mathfrak{m}=Ker(\pi) $ and
$M=\mathfrak{m}/\mathfrak{m}^2 $, then $M $ is again an
S-bimodule. Now, any S-bimodule can be encoded into a _quiver_ Q on k
points, the number of arrows from vertex i to vertex j being the number
of components in M of the form $M_{n_i \times
n_j}(\mathbb{C}) $. Again, it follows from the tubular neighborhood
theorem that the $\mathfrak{m} $-adic completion of A is
isomorphic to the completion of an algebra Morita equivalent to the
_path algebra_ $\mathbb{C} Q $ (being the tensor algebra
$T_S(M) $). As all the local algebras of the points are
quotients of this quiver-like completion, on the coalgebra level our
local coalgebras will be sub coalgebras of the coalgebra which is
co-Morita equivalent (and believe it or not but coalgebraists have a
name for this : _Takeuchi equivalence_) to the _quiver coalgebra_ which
is the vectorspace of the path algebra $\mathbb{C} Q $ with
multiplication induced by making all arrows from i to j skew-primitives,
that is, $\Delta(a) = e_i \otimes a + a \otimes e_j $ where the
$e_i $ are group-likes corresponding to the vertices. If all of
ths is a bit too much co to take in at once, I suggest the paper by Bill
Chin [A brief introduction to coalgebra representation
theory](http://condor.depaul.edu/~wchin/crt.pdf#search=%22%22A%20brief%20introduction%20to%20coalgebra%20representation%20theory%22%22). The
_coalgebra of noncommutative distributions_ we are after at is now the
union of all these Takeuchi-equivalent quiver coalgebras. In easy
examples such as the $\mathbb{C}[x] \star C_2 $-example this
coalgebra is still pretty small (the sum of the local coalgebras
corresponding to the local algebras $M_2(\mathbb{C}[[x]]) $
summed over all points $y \not= 0 $ summed with the quiver
coalgebra of the quiver $\xymatrix{\vtx{} \ar@/^/[rr] & & \vtx{}
\ar@/^/[ll]} $ In general though this is a huge object and we would
like to have a recipe to construct it from a manageable _blue-print_ and
that is what we will do next time.

Leave a Comment

non-geometry

Here’s
an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name
change.

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
paper
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost
commutative…

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the
form

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more
details).

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment

noncommutative topology (4)

For a
qurve (aka formally smooth algebra) A a *block* is a (possibly infinite
dimensional over the basefield) left A-module X such that its
endomorphism algebra $D = End_A(X)$ is a division algebra and X
(considered as a right D-module) is finite dimensional over D. If a
block X is finite dimensional over the basefield, we call it a *brick*
(aka a *Schur representation*). We want to endow the set of all blocks
with a topology and look at the induced topology on the subset of
bricks. It is an old result due to Claus Ringel
that there is a natural one-to-one correspondence between blocks of A
and algebra epimorphisms (in the categorical sense meaning that identify
equality of morphisms to another algebra) $A \rightarrow M_n(D) =
End_D(X_D)$. This result is important as it allows us to define a
partial order on teh set of all A-blocks via the notion of
*specialization*. If X and Y are two A-blocks with corresponding
epimorphisms $A \rightarrow M_n(D),~A \rightarrow M_m(E)$ we say that Y
is a specialization of X and we denote $X \leq Y$ provided there is an
epimorphism $A \rightarrow B$ making the diagram below commute

$\xymatrix{& M_n(D) \\\ A \ar[ru] \ar[r] \ar[rd] & B \ar[u]^i
\ar[d]^p \\\ & M_m(E)} $

where i is an inclusion and p is a
onto. This partial ordering was studied by Paul Cohn, George Bergman and
Aidan Schofield who use
the partial order to define the _closed subsets_ of blocks to be
those closed under specialization.

There are two important
constructions of A-blocks for a qurve A. One is Aidan’s construction of
a universal localization wrt. a *Sylvester rank function* (and which
should be of use in noncommutative rationality problems), the other
comes from invariant theory and is related to Markus Reineke’s monoid in
the special case when A is the path algebra of a quiver. Let X be a
GL(n)-closed irreducible subvariety of an irreducible component of
n-dimensional A-representations such that X contains a brick (and hence
a Zariski open subset of bricks), then taking PGL(n)-equivariant maps
from X to $M_n(\mathbb{C})$ determines a block (by inverting all central
elements). Now, take a *sensible* topology on the set of all A-bricks.
I would go for defining as the open wrt. a block X, the set of all
A-bricks which become simples after extending by the epimorphism
determined by a block Y such that $Y \leq X$. (note that this seems to
be different from the topology coming from the partial ordering…).
Still, wrt. this topology one can then again define a *noncommutative
topology* on the Abelian category $\mathbf{rep}~A$ of all finite
dimensional A-representations
but this time using filtrations with successive quotients being bricks
rather than simples.

Leave a Comment