Skip to content →

Tag: representations

a noncommutative topology 2

A *qurve*
is an affine algebra such that $~\Omega^1~A$ is a projective
$~A~$-bimodule. Alternatively, it is an affine algebra allowing lifts of
algebra morphisms through nilpotent ideals and as such it is the ‘right’
noncommutative generalization of Grothendieck’s smoothness criterium.
Examples of qurves include : semi-simple algebras, coordinate rings of
affine smooth curves, hereditary orders over curves, group algebras of
virtually free groups, path algebras of quivers etc.

Hence, qurves
behave a lot like curves and as such one might hope to obtain one day a
‘birational’ classification of them, if we only knew what we mean
by this. Whereas the etale classification of them is understood (see for
example One quiver to
rule them all
or Qurves and quivers )
we don’t know what the Zariski topology of a qurve might be.

Usually, one assigns to a qurve $~A~$ the Abelian category of all its
finite dimensional representations $\mathbf{rep}~A$ and we would like to
equip this set with a topology of sorts. Because $~A~$ is a qurve, its
scheme of n-dimensional representations $\mathbf{rep}_n~A$ is a smooth
affine variety for each n, so clearly $\mathbf{rep}~A$ being the disjoint
union of these acquires a trivial but nice commutative topology.
However, we would like open sets to hit several of the components
$\mathbf{rep}_n~A$ thereby ‘connecting’ them to form a noncommutative
topological space associated to $~A~$.

In a noncommutative topology on
rep A
I proposed a way to do this and though the main idea remains a
good one, I’ll ammend the construction next time. Whereas we don’t know
of a topology on the whole of $\mathbf{rep}~A$, there is an obvious
ordinary topology on the subset $\mathbf{simp}~A$ of all simple finite
dimensional representations, namely the induced topology of the Zariski
topology on $~\mathbf{spec}~A$, the prime spectrum of twosided prime ideals
of $~A~$. As in commutative algebraic geometry the closed subsets of the
prime spectrum consist of all prime ideals containing a given twosided
ideal. A typical open subset of the induced topology on $\mathbf{simp}~A$
hits many of the components $\mathbf{rep}_n~A$, but how can we extend it to
a topology on the whole of the category $\mathbf{rep}~A$ ?

Every
finite dimensional representation has (usually several) Jordan-Holder
filtrations with simple successive quotients, so a natural idea is to
use these filtrations to extend the topology on the simples to all
representations by restricting the top (or bottom) of the Jordan-Holder
sequence. Let W be the set of all words w such as $U_1U_2 \ldots U_k$
where each $U_i$ is an open subset of $\mathbf{simp}~A$. We can now define
the *left basic open set* $\mathcal{O}_w^l$ consisting of all finite
dimensional representations M having a Jordan-Holder sequence such that
the i-th simple factor (counted from the bottom) belongs to $U_i$.
(Similarly, we can define a *right basic open set* by counting from the
top or a *symmetric basic open set* by merely requiring that the simples
appear in order in the sequence). One final technical (but important)
detail is that we should really consider equivalence classes of left
basic opens. If w and w’ are two words we will denote by $\mathbf{rep}(w
\cup w’)$ the set of all finite dimensional representations having a
Jordan-Holder filtration with enough simple factors to have one for each
letter in w and w’. We then define $\mathcal{O}^l_w \equiv
\mathcal{O}^l_{w’}$ iff $\mathcal{O}^l_w \cap \mathbf{rep}(w \cup w’) =
\mathcal{O}^l_{w’} \cap \mathbf{rep}(w \cup w’)$. Equivalence classes of
these left basic opens form a partially ordered set (induced by
set-theoretic inclusion) with a unique minimal element 0 (the empty set
corresponding to the empty word) and a uunique maximal element 1 (the
set $\mathbf{rep}~A$ corresponding to the letter $w=\mathbf{simp}~A$).
Set-theoretic union induces an operation $\vee$ and the operation
$~\wedge$ is induced by concatenation of words, that is,
$\mathcal{O}^l_w \wedge \mathcal{O}^l_{w’} \equiv \mathcal{O}^l_{ww’}$.
This then defines a **left noncommutative topology** on $\mathbf{rep}~A$ in
the sense of Van Oystaeyen (see [part
1](http://www.neverendingbooks.org/index.php/noncommutative-topology-1 $
). To be precise, it satisfies the axioms in the left and middle column
of the following picture and
similarly, the right basic opens give a right noncommutative topology
(satisfying the axioms of the middle and right columns) whereas the
symmetric opens satisfy all axioms giving the basis of a noncommutative
topology. Even for very simple finite dimensional qurves such as
$\begin{bmatrix} \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{C}
\end{bmatrix}$ this defines a properly noncommutative topology on the
Abelian category of all finite dimensional representations which
obviously respect isomorphisms so is really a noncommutative topology on
the orbits. Still, while this may give a satisfactory local definition,
in gluing qurves together one would like to relax simple representations
to *Schurian* representations. This can be done but one has to replace
the topology coming from the Zariski topology on the prime spectrum by
the partial ordering on the *bricks* of the qurve, but that will have to
wait until next time…

One Comment

lulu neverendingbooks



Half a year ago, it all started with NeverEndingBooks in which I set out a rather modest goal:

Why NeverEndingBooks? We all complain about exaggerated prices of mathematical books from
certain publishers, poor quality of editing and refereeing offered, as well as far too stringent book-contracts. Rather than lamenting about this, NeverEndingBooks gives itself one year to learn (and report) about the many aspects of the book-production cycle and to explore whether an alternative exists. If at the end of this year we will have produced at least one book this experiment will be considered a success. If,
however, we find out that it is an impossible task, we will explain where it all went wrong and why it is better to stick to an established PublishingHouse and accept its terms.

I assume we did manage to do it after all as you may check by visiting our storefront :
www.lulu.com/neverendingbooks
. However, it all turned out to be quite different from what I had in mind half a year ago. So, perhaps it’s time to recap.

Originally, I’d planned to partner-up with the publisher-on-demand LightningSource but in the process they did require a VAT-number. In Belgium, the safest way to get one is to set up a non-profit organization (a VZW as we call
it). But then you have to write down your legal statutes, get them published in the Moniteur Belge (at a hefty price) but what really put me off was that you have to set up a “board of directors” consisting of at least three
people. I don’t mind following a folly but if I have to involve others I usually pass, so I abandoned the whole idea.

Still, I couldn’t help talking about the VAT-problem and at a certain time there was an idea to revive a sleeping VZW (=non-profit organization) of the Belgian Mathematical Society, the MaRC (MAthematical Research Centre), the statutes of which allowed to become a publishing house. But, this wouldn’t involve just two other people but the whole BMS so I decided
to forget all about it and have a short vacation in France together with a few (former)PhD-students.



Given plenty of sun, cheese and whine (not necessarily in that order) sooner or later we had to talk about _the_ problem. For Raf it was the first time he heard about it but when we realized I thought one could easily publish books well under 25 dollars he was immediately interested and insisted we should set up a board of directors and continue with the plan.

The different roles to play in the board were more or less self-evident : I had to be the treasurer (given the fact that I was the only with a secure, though small, income), Geert had to become chairman (being the only one possessing suits), Raf would be secretary (being the only one who could write better Flemish than English) and Jan or Stijn would do PR (as they are the only ones having enough social skills).

So, we went back willing to go through the whole process (at least 3 months) of obtaining a VAT-number.

But then Raf got so interested in the whole idea that he explored other possibilities (I think he was more motivated by the fact that his sister wanted to publish her thesis rather than anything else) and came up with lulu.com.

No legal hassle, no VAT-numbers, nothing required (or so it seemed). Still, before risking his sister’s thesis he wanted to check the service out and as it is a lot easier to take a book lying around rather than write one yourself he took my version 2 and published it at Lulu’s (since then this version is nicknamed Rothko@n).

Although I gave him the permission to do so, it didn’t feel right that people should pay even a small amount for a nicely bound unedited version 2. So, the last month and a half I’ve been editing and partially rewriting version 2 and the two volumes are now available!

Major changes are to the 4 middle chapters. There is now chapter 3 “Etale Technology” which contains all of the etale tricks scattered earlier in two chapters, chapter 4 ‚”Quiver Representations” collects all the
quiver material (again, scattered throughout the previous version). Chapter 5 ‚”Semisimple Representations” now includes recent material such as Raf’s characterization of the smooth locus of Cayley-smooth orders and our (together with Geert) classification of the central singularities, and chapter 6 ‚”Nilpotent Representations” now includes the material on Brauer-Severi varities which was in version 1 but somehow didn’t make it to version 2 before.

Leave a Comment

the Klein stack

Klein’s
quartic $X$is the smooth plane projective curve defined by
$x^3y+y^3z+z^3x=0$ and is one of the most remarkable mathematical
objects around. For example, it is a Hurwitz curve meaning that the
finite group of symmetries (when the genus is at least two this group
can have at most $84(g-1)$ elements) is as large as possible, which in
the case of the quartic is $168$ and the group itself is the unique
simple group of that order, $G = PSL_2(\mathbb{F}_7)$ also known as
Klein\’s group. John Baez has written a [beautiful page](http://math.ucr.edu/home/baez/klein.html) on the Klein quartic and
its symmetries. Another useful source of information is a paper by Noam
Elkies [The Klein quartic in number theory](www.msri.org/publications/books/Book35/files/elkies.pd).
The quotient map $X \rightarrow X/G \simeq \mathbb{P}^1$ has three
branch points of orders $2,3,7$ in the points on $\mathbb{P}^1$ with
coordinates $1728,0,\infty$. These points correspond to the three
non-free $G$-orbits consisting resp. of $84,56$ and $24$ points.
Now, remove from $X$ a couple of $G$-orbits to obtain an affine open
subset $Y$ such that $G$ acts on its cordinate ring $\mathbb{C}[Y]$ and
form the Klein stack (or hereditary order) $\mathbb{C}[Y] \bigstar G$,
the skew group algebra. In case the open subset $Y$ contains all
non-free orbits, the [one quiver](www.matrix.ua.ac.be/master/coursenotes/onequiver.pdf) of this
qurve has the following shape $\xymatrix{\vtx{} \ar@/^/[dd] \\
\\ \vtx{} \ar@/^/[uu]} $ $\xymatrix{& \vtx{} \ar[ddl] & \\
& & \\ \vtx{} \ar[rr] & & \vtx{} \ar[uul]} $ $\xymatrix{& &
\vtx{} \ar[dll] & & \\ \vtx{} \ar[d] & & & & \vtx{} \ar[ull] \\ \vtx{}
\ar[dr] & & & & \vtx{} \ar[u] \\ & \vtx{} \ar[rr] & & \vtx{} \ar[ur]
&} $ Here, the three components correspond to the three
non-free orbits and the vertices correspond to the isoclasses of simple
$\mathbb{C}[Y] \bigstar G$ of dimension smaller than $168$. There are
two such of dimension $84$, three of dimension $56$ and seven of
dimension $24$ which I gave the non-imaginative names \’twins\’,
\’trinity\’ and \’the dwarfs\’. As we want to spice up later this
Klein stack to a larger group, we need to know the structure of these
exceptional simples as $G$-representations. Surely, someone must have
written a paper on the general problem of finding the $G$-structure of
simples of skew-group algebras $A \bigstar G$, so if you know a
reference please let me know. I used an old paper by Idun Reiten and
Christine Riedtmann to do this case (which is easier as the stabilizer
subgroups are cyclic and hence the induced representations of their
one-dimensionals correspond to the exceptional simples).

Leave a Comment