Skip to content →

Tag: Quillen

differential forms

The
previous post in this sequence was [(co)tangent bundles][1]. Let $A$ be
a $V$-algebra where $V = C \times \ldots \times C$ is the subalgebra
generated by a complete set of orthogonal idempotents in $A$ (in case $A
= C Q$ is a path algebra, $V$ will be the subalgebra generated by the
vertex-idempotents, see the post on [path algebras][2] for more
details). With $\overline{A}$ we denote the bimodule quotient
$\overline{A} = A/V$ Then, we can define the _non-commutative
(relative) differential n-forms_ to be $\Omega^n_V~A = A \otimes_V
\overline{A} \otimes_V \ldots \otimes_V \overline{A}$ with $n$ factors
$\overline{A}$. To get the connection with usual differential forms let
us denote the tensor $a_0 \otimes a_1 \otimes \ldots \otimes a_n =
(a_0,a_1,\ldots,a_n) = a_0 da_1 \ldots da_n$ On $\Omega_V~A =
\oplus_n~\Omega^n_V~A$ one defines an algebra structure via the
multiplication $(a_0da_1 \ldots da_n)(a_{n+1}da_{n+2} \ldots da_k)$$=
\sum_{i=1}^n (-1)^{n-i} a_0da_1 \ldots d(a_ia_{i+1}) \ldots da_k$
$\Omega_V~A$ is a _differential graded algebra_ with differential $d :
\Omega^n_V~A \rightarrow \Omega^{n+1}_V~A$ defined by $d(a_0 da_1 \ldots
da_n) = da_0 da_1 \ldots da_n$ This may seem fairly abstract but in
case $A = C Q$ is a path algebra, then the bimodule $\Omega^n_V~A$ has a
$V$-generating set consisting of precisely the elements $p_0 dp_1
\ldots dp_n$ with all $p_i$ non-zero paths in $A$ and such that
$p_0p_1 \ldots p_n$ is also a non-zero path. One can put another
algebra multiplication on $\Omega_V~A$ which Cuntz and Quillen call the
_Fedosov product_ defined for an $n$-form $\omega$ and a form $\mu$ by
$\omega Circ \mu = \omega \mu -(-1)^n d\omega d\mu$ There is an
important relation between the two structures, the degree of a
differential form puts a filtration on $\Omega_V~A$ (with Fedosov
product) such that the _associated graded algebra_ is $\Omega_V~A$ with
the usual product. One can visualize the Fedosov product easily in the
case of path algebras because $\Omega_V~C Q$ with the Fedosov product is
again the path algebra of the quiver obtained by doubling up all the
arrows of $Q$. In our basic example when $Q$ is the quiver
$\xymatrix{\vtx{} \ar[rr]^u & & \vtx{} \ar@(ur,dr)^v} $ the
algebra of non-commutative differential forms equipped with the Fedosov
product is isomorphic to the path algebra of the quiver
$\xymatrix{\vtx{} \ar@/^/[rr]^{a=u+du} \ar@/_/[rr]_{b=u-du} & &
\vtx{} \ar@(u,ur)^{x=v+dv} \ar@(d,dr)_{y=v-dv}} $ with the
indicated identification of arrows with elements from $\Omega_V~C Q$.
Note however that we usually embed the algebra $C Q$ as the degree zero
differential forms in $\Omega_V~C Q$ with the usual multiplication and
that this embedding is no longer an algebra map (but a based linear map)
for the Fedosov product. For this reason, Cuntz and Quillen invent a
Yang-Mills type argument to “flow” this linear map to an algebra
embedding, but to motivate this we will have to say some things about
[curvatures][3].

[1]: http://www.neverendingbooks.org/index.php?p=352
[2]: http://www.neverendingbooks.org/index.php?p=349
[3]: http://www.neverendingbooks.org/index.php?p=353

Leave a Comment

cotangent bundles

The
previous post in this sequence was [moduli spaces][1]. Why did we spend
time explaining the connection of the quiver
$Q~:~\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar@(ur,dr)^x} $
to moduli spaces of vectorbundles on curves and moduli spaces of linear
control systems? At the start I said we would concentrate on its _double
quiver_ $\tilde{Q}~:~\xymatrix{\vtx{} \ar@/^/[rr]^a && \vtx{}
\ar@(u,ur)^x \ar@(d,dr)_{x^*} \ar@/^/[ll]^{a^*}} $ Clearly,
this already gives away the answer : if the path algebra $C Q$
determines a (non-commutative) manifold $M$, then the path algebra $C
\tilde{Q}$ determines the cotangent bundle of $M$. Recall that for a
commutative manifold $M$, the cotangent bundle is the vectorbundle
having at the point $p \in M$ as fiber the linear dual $(T_p M)^*$ of
the tangent space. So, why do we claim that $C \tilde{Q}$
corresponds to the cotangent bundle of $C Q$? Fix a dimension vector
$\alpha = (m,n)$ then the representation space
$\mathbf{rep}_{\alpha}~Q = M_{n \times m}(C) \oplus M_n(C)$ is just
an affine space so in its point the tangent space is the representation
space itself. To define its linear dual use the non-degeneracy of the
_trace pairings_ $M_{n \times m}(C) \times M_{m \times n}(C)
\rightarrow C~:~(A,B) \mapsto tr(AB)$ $M_n(C) \times M_n(C)
\rightarrow C~:~(C,D) \mapsto tr(CD)$ and therefore the linear dual
$\mathbf{rep}_{\alpha}~Q^* = M_{m \times n}(C) \oplus M_n(C)$ which is
the representation space $\mathbf{rep}_{\alpha}~Q^s$ of the quiver
$Q^s~:~\xymatrix{\vtx{} & & \vtx{} \ar[ll] \ar@(ur,dr)} $
and therefore we have that the cotangent bundle to the representation
space $\mathbf{rep}_{\alpha}~Q$ $T^* \mathbf{rep}_{\alpha}~Q =
\mathbf{rep}_{\alpha}~\tilde{Q}$ Important for us will be that any
cotangent bundle has a natural _symplectic structure_. For a good
introduction to this see the [course notes][2] “Symplectic geometry and
quivers” by [Geert Van de Weyer][3]. As a consequence $C \tilde{Q}$
can be viewed as a non-commutative symplectic manifold with the
symplectic structure determined by the non-commutative 2-form
$\omega = da^* da + dx^* dx$ but before we can define all this we
will have to recall some facts on non-commutative differential forms.
Maybe [next time][4]. For the impatient : have a look at the paper by
Victor Ginzburg [Non-commutative Symplectic Geometry, Quiver varieties,
and Operads][5] or my paper with Raf Bocklandt [Necklace Lie algebras
and noncommutative symplectic geometry][6]. Now that we have a
cotangent bundle of $C Q$ is there also a _tangent bundle_ and does it
again correspond to a new quiver? Well yes, here it is
$\xymatrix{\vtx{} \ar@/^/[rr]^{a+da} \ar@/_/[rr]_{a-da} & & \vtx{}
\ar@(u,ur)^{x+dx} \ar@(d,dr)_{x-dx}} $ and the labeling of the
arrows may help you to work through some sections of the Cuntz-Quillen
paper…

[1]: http://www.neverendingbooks.org/index.php?p=39
[2]: http://www.win.ua.ac.be/~gvdwey/lectures/symplectic_moment.pdf
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: http://www.neverendingbooks.org/index.php?p=41
[5]: http://www.arxiv.org/abs/math.QA/0005165
[6]: http://www.arxiv.org/abs/math.AG/0010030

2 Comments

algebraic vs. differential nog


OK! I asked to get side-tracked by comments so now that there is one I’d better deal with it at once. So, is there any relation between the non-commutative (algebraic) geometry based on formally smooth algebras and the non-commutative _differential_ geometry advocated by Alain Connes?
Short answers to this question might be (a) None whatsoever! (b) Morally they are the same! and (c) Their objectives are quite different!

As this only adds to the confusion, let me try to explain each point separately after issuing a _disclaimer_ that I am by no means an expert in Connes’ NOG neither in $C^* $-algebras. All I know is based on sitting in some lectures by Alain Connes, trying at several times to make sense of his terribly written book and indeed by reading the Landi notes in utter desperation.
(a) _None whatsoever!_ : Connes’ approach via spectral triples is modelled such that one gets (suitable) ordinary (that is, commutative) manifolds into this framework. The obvious algebraic counterpart for this would be a statement to the effect that the affine coordinate ring $\mathbb{C}[X] $ of a (suitable) smooth affine variety X would be formally smooth. Now you’re in for a first shock : the only affine smooth varieties for which this holds are either _points_ or _curves_! Not much of a geometry huh? In fact, that is the reason why I prefer to call formally smooth algebras just _qurves_ …
(b) _Morally they are the same_ : If you ever want to get some differential geometry done, you’d better have a connection on the tangent bundle! Now, Alain Connes extended the notion of a connection to the non-commutative world (see for example _the_ book) and if you take the algebraic equivalent of it and ask for which algebras possess such a connection, you get _precisely_ the formally smooth algebras (see section 8 of the Cuntz-Quillen paper “Algebra extensions and nonsingularity” Journal AMS Vol 8 (1991). Besides there is a class of $C^* $-algebras which are formally smooth algebras : the AF-algebras which also feature prominently in the Landi notes (although they are virtually never affine, that is, finitely generated as an algebra).
(c) _Their objectives are quite different!_ : Connes’ formalism aims to define a length function on a non-commutative manifold associated to a $C^* $-algebra. Non-commutative geometry based on formally smooth algebras has no interest in defining some sort of space associated to the algebra. The major importance of formally smooth algebras (as advocated by Maxim Kontsevich is that such an algebra A can be seen as a _machine_ producing an infinite family of ordinary commutative manifolds via its _representation varieties_ $\mathbf{rep}_n~A $ which are manifolds equipped with a $GL_n $-action. Non-commutative functions and diifferential forms defined at the level of the formally smooth algebra A do determine similar $GL_n $-invariant features on _all_ of these representation varieties at once.

Leave a Comment