Skip to content →

Tag: paintings

Pollock your own noncommutative space

I really like Matilde Marcolli’s idea to use some of Jackson Pollock’s paintings as metaphors for noncommutative spaces. In her talk she used this painting



and refered to it (as did I in my post) as : Jackson Pollock “Untitled N.3”. Before someone writes a post ‘The Pollock noncommutative space hoax’ (similar to my own post) let me point out that I am well aware of the controversy surrounding this painting.

This painting is among 32 works recently discovered and initially attributed to Pollock.
In fact, I’ve already told part of the story in Doodles worth millions (or not)? (thanks to PD1). The story involves the people on the right : from left to right, Jackson Pollock, his wife Lee Krasner, Mercedes Matter and her son Alex Matter.

Alex Matter, whose father, Herbert, and mother, Mercedes, were artists and friends of Jackson Pollock, discovered after his mother died a group of small drip paintings in a storage locker in Wainscott, N.Y. which he believed to be authentic Pollocks.

Read the post mentioned above if you want to know how mathematics screwed up his plan, or much better, reed the article Anatomy of the Jackson Pollock controversy by Stephen Litt.

So, perhaps the painting above was not the smartest choice, but we could take any other genuine Pollock ‘drip-painting’, a technique he taught himself towards the end of 1946 to make an image by splashing, pouring, sloshing colors onto the canvas. Typically, such a painting consists of blops of paint, connected via thin drip-lines.

What does this have to do with noncommutative geometry? Well, consider the blops as ‘points’. In commutative geometry, distinct points cannot share tangent information ((technically : a commutative semi-local ring splits as the direct sum of local rings and this does no longer hold for a noncommutative semi-local ring)). In the noncommutative world though, they can!, or if you want to phrase it like this, noncommutative points ‘can talk to each other’. And, that’s what we cherish in those drip-lines.

But then, if two points share common tangent informations, they must be awfully close to each other… so one might imagine these Pollock-lines to be strings holding these points together. Hence, it would make more sense to consider the ‘Pollock-quotient-painting’, that is, the space one gets after dividing out the relation ‘connected by drip-lines’ ((my guess is that Matilde thinks of the lines as the action of a group on the points giving a topological horrible quotient space, and thats precisely where noncommutative geometry shines)).

For this reason, my own mental picture of a genuinely noncommutative space ((that is, the variety corresponding to a huge noncommutative algebra such as free algebras, group algebras of arithmetic groups or fundamental groups)) looks more like the picture below



The colored blops you see are really sets of points which you might view as, say, a FacebookGroup ((technically, think of them as the connected components of isomorphism classes of finite dimensional simple representations of your favorite noncommutative algebra)). Some chatter may occur between two distinct FacebookGroups, the more chatter the thicker the connection depicted ((technically, the size of the connection is the dimension of the ext-group between generic simples in the components)). Now, there are some tiny isolated spots (say blue ones in the upper right-hand quadrant). These should really be looked at as remote clusters of noncommutative points (sharing no (tangent) information whatsoever with the blops in the foregound). If we would zoom into them beyond the Planck scale (if I’m allowed to say a bollock-word in a Pollock-post) they might reveal again a whole universe similar to the interconnected blops upfront.

The picture was produced using the fabulous Pollock engine. Just use your mouse to draw and click to change colors in order to produce your very own noncommutative space!

For the mathematicians still around, this may sound like a lot of Pollock-bollocks but can be made precise. See my note Noncommutative geometry and dual coalgebras for a very terse reading. Now that coalgebras are gaining popularity, I really should write a more readable account of it, including some fanshi-wanshi examples…

4 Comments

Doodles worth millions (or not)

Via PD1, who told me the story on her 23rd birthday, yesterday.

The story starts with Alex Matter, whose father, Herbert, and mother, Mercedes, were artists and friends of Jackson Pollock, famous for his drip-paintings. He discovered a group of small drip paintings in a storage locker in Wainscott, N.Y. which he believed to be authentic Pollocks, and if he is proved right, they would be worth millions of dollars.

Usually such discoveries lead to heated debates among art-critics and Pollock-experts whether one finds proof to authenticate the paintings. Not this time. In steps a mathematician who claims that he can authenticate a Pollock drip-painting by calculating its fractal dimension (??!!)… and claims that these drippings cannot be Pollocks because their dimension is too small… LOL!

This madmatician is Richard Taylor from the University of Oregon in Corvallis.

Taylor took a digital image of a Pollock painting into his lab, broke the image into its separate colors, and computed the fractal dimension of the lines in each color. Each time, he got a number between 1 and 2, confirming his notion that Pollock’s paintings are fractal. “Rather than mimicking nature,” Taylor says, Pollock “adopted its language of fractals to build his own patterns.”

In 1999, Taylor reported that the fractal dimension of Pollock’s paintings increased during his life. His early drip paintings have a loose web of lines, mostly at the same scale. Because these paintings show no fractal qualities, their dimension is near 1. But Pollock’s later paintings have a dense network of overlapping lines, ranging from large, bold strokes to delicate threads, Taylor calculated a fractal dimension of 1.72 for these works.

His paper on this “Authenticating Pollock Paintings Using Fractal Geometry” can be found here. Luckily, the story doesn’t end here. In steps a graduate student in astrophysics at Case Western, Katherine Jones-Smith who had to give a seminar talk to her fellow students.

“I was sort of bored with particle astrophysics,” Jones-Smith says, so she looked around for something different. She came across an account of Taylor’s work, and “it sounded really cool,” she recalls.

“The obvious check to me was to make sure that not any old scribble would appear to be fractal,” she says. “So, I made some scribbles.” Much to her surprise, when she computed the fractal dimension of her scribbles, they turned out to be greater than 1.

Recently, she arXived her findings in the paper Drip Paintings and Fractal Analysis from which the above doodles are taken, called appropriately “Gross pebbles” and “Mixed stars”.

When Katherine Jones-Smith made some doodles on a page “”pretty ugly” ones, she says”she found that they shared the qualities of a Pollock, according to an analysis that follows Taylor’s approach. “Either Taylor is wrong, or Kate’s drawings are worth $40 million,” says Jones-Smith’s collaborator Harsh Mathur. “We’d be happy either way.

More on this hilarious story can be found in this science news article, this New-York times story or the Pollocks-bollocks blog entry over at biophemera.

One Comment

artistic and other frustrations

Yesterday, PD1 exhibited some of her paintings in the Antwerp Museum for Photography. Over breakfast this morning she was in a rare angry mood.

No, she was satisfied with the responses she got on her work, the room was not ideal (lighting etc.) but that was not what mattered…

Me : So?

She : There was this other work, a video-performance. I once saw by accident on Arte a short-film and this performance stole the whole idea of that film, from start to finish! The whole idea was nicked!

Me : Wake up! That’s the majority way of creating art, or science for that matter.

She : But it is so unfair! Why do people steal ideas ?

Me : Maybe they don’t see it as stealing. Maybe they believe they do a better thing with the original idea than the person who invented it.

She : Nothing can beat the original! Anyway, I find the most rewarding thing about art to come up with an original idea and work it out. It cannot be rewarding to steal other people\’s ideas.

Me (dry) : I think such people are after other rewards…

She : The same thing happens at school. Sometimes I come up with a suggestion to use a different technique or material and then a few weeks later, half of my class seems
to have worked this out too.

Me : So ? You still had the idea.

She : Yes, but the Jury doesn’t know that!

Me : So ? After the Jury you can still be confident to come up with new ideas, these others may fear they will only be able to repeat themselves.

She : But is it so unfair!

Me : What’s the alternative ? Are you going to lock yourself up in your room to
paint and let nobody see the result?

She : No, but I prefer to do my painting here at home, on my own with nobody looking over my shoulder constantly to see whether they can use some of my ideas. I will
paint on my own and only when it is fully finished they may see the result!

Me : That’s the spirit girl! You are much cleverer than I will ever be…

Leave a Comment