Skip to content →

Tag: noncommutative

Looking for F_un

There are only a handful of human activities where one goes to extraordinary lengths to keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, supporting the Belgian football team and … mathematics.

In recent years several people spend a lot of energy looking for properties of an elusive object : the field with one element $\mathbb{F}_1 $, or in French : “F-un”. The topic must have reached a level of maturity as there was a conference dedicated entirely to it : NONCOMMUTATIVE GEOMETRY AND GEOMETRY OVER THE FIELD WITH ONE ELEMENT.

In this series I’d like to find out what the fuss is all about, why people would like it to exist and what it has to do with noncommutative geometry. However, before we start two remarks :

The field $\mathbb{F}_1 $ does not exist, so don’t try to make sense of sentences such as “The ‘field with one element’ is the free algebraic monad generated by one constant (p.26), or the universal generalized ring with zero (p.33)” in the wikipedia-entry. The simplest proof is that in any (unitary) ring we have $0 \not= 1 $ so any ring must contain at least two elements. A more highbrow version : the ring of integers $\mathbb{Z} $ is the initial object in the category of unitary rings, so it cannot be an algebra over anything else.

The second remark is that several people have already written blog-posts about $\mathbb{F}_1 $. Here are a few I know of : David Corfield at the n-category cafe and at his old blog, Noah Snyder at the secret blogging seminar, Kea at the Arcadian functor, AC and K. Consani at Noncommutative geometry and John Baez wrote about it in his weekly finds.

The dream we like to keep alive is that we will prove the Riemann hypothesis one fine day by lifting Weil’s proof of it in the case of curves over finite fields to rings of integers.

Even if you don’t know a word about Weil’s method, if you think about it for a couple of minutes, there are two immediate formidable problems with this strategy.

For most people this would be evidence enough to discard the approach, but, we mathematicians have found extremely clever ways for going into denial.

The first problem is that if we want to think of $\mathbf{spec}(\mathbb{Z}) $ (or rather its completion adding the infinite place) as a curve over some field, then $\mathbb{Z} $ must be an algebra over this field. However, no such field can exist…

No problem! If there is no such field, let us invent one, and call it $\mathbb{F}_1 $. But, it is a bit hard to do geometry over an illusory field. Christophe Soule succeeded in defining varieties over $\mathbb{F}_1 $ in a talk at the 1999 Arbeitstagung and in a more recent write-up of it : Les varietes sur le corps a un element.

We will come back to this in more detail later, but for now, here’s the main idea. Consider an existent field $k $ and an algebra $k \rightarrow R $ over it. Now study the properties of the functor (extension of scalars) from $k $-schemes to $R $-schemes. Even if there is no morphism $\mathbb{F}_1 \rightarrow \mathbb{Z} $, let us assume it exists and define $\mathbb{F}_1 $-varieties by requiring that these guys should satisfy the properties found before for extension of scalars on schemes defined over a field by going to schemes over an algebra (in this case, $\mathbb{Z} $-schemes). Roughly speaking this defines $\mathbb{F}_1 $-schemes as subsets of points of suitable $\mathbb{Z} $-schemes.

But, this is just one half of the story. He adds to such an $\mathbb{F}_1 $-variety extra topological data ‘at infinity’, an idea he attributes to J.-B. Bost. This added feature is a $\mathbb{C} $-algebra $\mathcal{A}_X $, which does not necessarily have to be commutative. He only writes : “Par ignorance, nous resterons tres evasifs sur les proprietes requises sur cette $\mathbb{C} $-algebre.”

The algebra $\mathcal{A}_X $ originates from trying to bypass the second major obstacle with the Weil-Riemann-strategy. On a smooth projective curve all points look similar as is clear for example by noting that the completions of all local rings are isomorphic to the formal power series $k[[x]] $ over the basefield, in particular there is no distinction between ‘finite’ points and those lying at ‘infinity’.

The completions of the local rings of points in $\mathbf{spec}(\mathbb{Z}) $ on the other hand are completely different, for example, they have residue fields of different characteristics… Still, local class field theory asserts that their quotient fields have several common features. For example, their Brauer groups are all isomorphic to $\mathbb{Q}/\mathbb{Z} $. However, as $Br(\mathbb{R}) = \mathbb{Z}/2\mathbb{Z} $ and $Br(\mathbb{C}) = 0 $, even then there would be a clear distinction between the finite primes and the place at infinity…

Alain Connes came up with an extremely elegant solution to bypass this problem in Noncommutative geometry and the Riemann zeta function. He proposes to replace finite dimensional central simple algebras in the definition of the Brauer group by AF (for Approximately Finite dimensional)-central simple algebras over $\mathbb{C} $. This is the origin and the importance of the Bost-Connes algebra.

We will come back to most of this in more detail later, but for the impatient, Connes has written a paper together with Caterina Consani and Matilde Marcolli Fun with $\mathbb{F}_1 $ relating the Bost-Connes algebra to the field with one element.

6 Comments

New world record obscurification

I’ve always thought of Alain Connes as the unchallengeable world-champion opaque mathematical writing, but then again, I was proven wrong.

Alain’s writings are crystal clear compared to the monstrosity the AMS released to the world : In search of the Riemann zeros – Strings, fractal membranes and noncommutative spacetimes by Michel L. Lapidus.

Here’s a generic half-page from a total of 558 pages (or rather 314, as the remainder consists of appendices, bibliography and indices…). I couldn’t find a single precise, well-defined and proven statement in the entire book.

4.2. Fractal Membranes and the Second Quantization of Fractal Strings
“The first quantization is a mystery while the second quantization is a functor” Edward Nelson (quoted in [Con6,p.515])

We briefly discuss here joint work in preparation with Ryszard Nest [LapNe1]. This work was referred to several times in Chapter 3, and, as we pointed out there, it provides mathematically rigorous construction of fractal membranes (as well as of self-similar membranes), in the spirit of noncommutative geometry and quantum field theory (as well as of string theory). It also enables us to show that the expected properties of fractal (or self-similar) membranes, derived in our semi-heuristic model presented in Sections 3.2 and 3.2. are actually satisfied by the rigorous model in [LapNe1]. In particular, there is a surprisingly good agreement between the author’s original intuition on fractal (or self-similar) membrane, conceived as an (adelic) Riemann surface with infinite genus or as an (adelic) infinite dimensional torus, and properties of the noncommutative geometric model in [LapNe1]. In future joint work, we hope to go beyond [LapNe1] and to give even more (noncommutative) geometric content to this analogy, possibly along the lines suggested in the next section (4.3).
We will merely outline some aspects of the construction, without supplying any technical details, instead referring the interested reader to the forthcoming paper [LapNe1] for a complete exposition of the construction and precise statements of results.

Can the AMS please explain to the interested person buying this book why (s)he will have to await a (possible) forthcoming paper to (hopefully) make some sense of this apparent nonsense?

3 Comments

KMS, Gibbs & zeta function

Time to wrap up this series on the Bost-Connes algebra. Here’s what we have learned so far : the convolution product on double cosets

$\begin{bmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{bmatrix} \backslash \begin{bmatrix} 1 & \mathbb{Q} \\ 0 & \mathbb{Q}_{> 0} \end{bmatrix} / \begin{bmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{bmatrix} $

is a noncommutative algebra, the Bost-Connes Hecke algebra $\mathcal{H} $, which is a bi-chrystalline graded algebra (somewhat weaker than ‘strongly graded’) with part of degree one the group-algebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $. Further, $\mathcal{H} $ has a natural one-parameter family of algebra automorphisms $\sigma_t $ defined by $\sigma_t(X_n) = n^{it}X_n $ and $\sigma_t(Y_{\lambda})=Y_{\lambda} $.

For any algebra $A $ together with a one-parameter family of automorphisms $\sigma_t $ one is interested in KMS-states or Kubo-Martin-Schwinger states with parameter $\beta $, $KMS_{\beta} $ (this parameter is often called the ‘invers temperature’ of the system) as these are suitable equilibria states. Recall that a state is a special linear functional $\phi $ on $A $ (in particular it must have norm one) and it belongs to $KMS_{\beta} $ if the following commutation relation holds for all elements $a,b \in A $

$\phi(a \sigma_{i\beta}(b)) = \phi(b a) $

Let us work out the special case when $A $ is the matrix-algebra $M_n(\mathbb{C}) $. To begin, all algebra-automorphisms are inner in this case, so any one-parameter family of automorphisms is of the form

$\sigma_t(a) = e^{itH} a e^{-itH} $

where $e^{itH} $ is the matrix-exponential of the nxn matrix $H $. For any parameter $\beta $ we claim that the linear functional

$\phi(a) = \frac{1}{tr(e^{-\beta H})} tr(a e^{-\beta H}) $

is a KMS-state.Indeed, we have for all matrices $a,b \in M_n(\mathbb{C}) $ that

$\phi(a \sigma_{i \beta}(b)) = \frac{1}{tr(e^{-\beta H})} tr(a e^{- \beta H} b e^{\beta H} e^{- \beta H}) $

$= \frac{1}{tr(e^{-\beta H})} tr(a e^{-\beta H} b) = \frac{1}{tr(e^{-\beta H})} tr(ba e^{-\beta H}) = \phi(ba) $

(the next to last equality follows from cyclic-invariance of the trace map).
These states are usually called Gibbs states and the normalization factor $\frac{1}{tr(e^{-\beta H})} $ (needed because a state must have norm one) is called the partition function of the system. Gibbs states have arisen from the study of ideal gases and the place to read up on all of this are the first two chapters of the second volume of “Operator algebras and quantum statistical mechanics” by Ola Bratelli and Derek Robinson.

This gives us a method to construct KMS-states for an arbitrary algebra $A $ with one-parameter automorphisms $\sigma_t $ : take a simple n-dimensional representation $\pi~:~A \mapsto M_n(\mathbb{C}) $, find the matrix $H $ determining the image of the automorphisms $\pi(\sigma_t) $ and take the Gibbs states as defined before.

Let us return now to the Bost-Connes algebra $\mathcal{H} $. We don’t know any finite dimensional simple representations of $\mathcal{H} $ but, sure enough, have plenty of graded simple representations. By the usual strongly-graded-yoga they should correspond to simple finite dimensional representations of the part of degree one $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ (all of them being one-dimensional and corresponding to characters of $\mathbb{Q}/\mathbb{Z} $).

Hence, for any $u \in \mathcal{G} = \prod_p \hat{\mathbb{Z}}_p^{\ast} $ (details) we have a graded simple $\mathcal{H} $-representation $S_u = \oplus_{n \in \mathbb{N}_+} \mathbb{C} e_n $ with action defined by

$\begin{cases} \pi_u(X_n)(e_m) = e_{nm} \\ \pi_u(Y_{\lambda})(e_m) = e^{2\pi i n u . \lambda} e_m \end{cases} $

Here, $u.\lambda $ is computed using the ‘chinese-remainder-identification’ $\mathcal{A}/\mathcal{R} = \mathbb{Q}/\mathbb{Z} $ (details).

Even when the representations $S_u $ are not finite dimensional, we can mimic the above strategy : we should find a linear operator $H $ determining the images of the automorphisms $\pi_u(\sigma_t) $. We claim that the operator is defined by $H(e_n) = log(n) e_n $ for all $n \in \mathbb{N}_+ $. That is, we claim that for elements $a \in \mathcal{H} $ we have

$\pi_u(\sigma_t(a)) = e^{itH} \pi_u(a) e^{-itH} $

So let us compute the action of both sides on $e_m $ when $a=X_n $. The left hand side gives $\pi_u(n^{it}X_n)(e_m) = n^{it} e_{mn} $ whereas the right-hand side becomes

$e^{itH}\pi_u(X_n) e^{-itH}(e_m) = e^{itH} \pi_u(X_n) m^{-it} e_m = $

$e^{itH} m^{-it} e_{mn} = (mn)^{it} m^{-it} e_{mn} = n^{it} e_{mn} $

proving the claim. For any parameter $\beta $ this then gives us a KMS-state for the Bost-Connes algebra by

$\phi_u(a) = \frac{1}{Tr(e^{-\beta H})} Tr(\pi_u(a) e^{-\beta H}) $

Finally, let us calculate the normalization factor (or partition function) $\frac{1}{Tr(e^{-\beta H})} $. Because $e^{-\beta H}(e_n) = n^{-\beta} e_n $ we have for that the trace

$Tr(e^{-\beta H}) = \sum_{n \in \mathbb{N}_+} \frac{1}{n^{\beta}} = \zeta(\beta) $

is equal to the Riemann zeta-value $\zeta(\beta) $ (at least when $\beta > 1 $).

Summarizing, we started with the definition of the Bost-Connes algebra $\mathcal{H} $, found a canonical one-parameter subgroup of algebra automorphisms $\sigma_t $ and computed that the natural equilibria states with respect to this ‘time evolution’ have as their partition function the Riemann zeta-function. Voila!

2 Comments