Skip to content →

Tag: non-commutative

non-geometry

Here’s
an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name
change.

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
paper
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost
commutative…

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the
form

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more
details).

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment

a good day at the arxiv

The
arXiv is a bit like cable tv : on certain days there seems to be nothing
interesting on, whereas on others it’s hard to decide what to see in
real time and what to record for later. Today was one of the better
days, at least on the arXiv. Pavel Etingof submitted the
notes of a course he gave at ETH in the spring and summer of 2005 Lectures on
Calogero-Moser systems
. I always sympathize with people taking time
to explain what they are interested in to non-experts, especially if
they even take more time to write up course notes so that the rest of us
can also benefit from these talks. Besides, it is always more rewarding
to learn a topic from a key-figure such as Etingof, rather than sitting
through talks on this given by people who only embrace a topic as a
career move. However, as I’m no longer that much into Calogero-Moser
stuff I’ve put Pavel’s notes in recording mode as I definitely have to
spend some time getting through that other paper posted today : Notes on A-infinity
algebras, A-infinity categories and non-commutative geometry. I
by
Maxim
Kontsevich
and Yan
Soibelman
. They really come close to things that interest me right
now and although I’m not the greatest coalgebra-fan, they may give me
just enough reasons to bite the bullet. On a different topic : with
plenty of help from Jacques Distler, my
neverending planet
is now also serving MathML, but you need to view it using Firefox and
have all the required fonts
installed.

Leave a Comment

why nag? (1)

Let us
take a hopeless problem, motivate why something like non-commutative
algebraic geometry might help to solve it, and verify whether this
promise is kept.

Suppose we want to know all solutions in invertible
matrices to the braid relation (or Yang-Baxter equation)

X Y X
= Y X Y

All such solutions (for varying size of matrices)
form an additive Abelian category \mathbf{rep}~B_3, so a big step forward would be to know all its
simple solutions (that is, those whose matrices cannot be brought in
upper triangular block form). A literature check shows that even this
task is far too ambitious. The best result to date is the classification
due to Imre Tuba and
Hans Wenzl
of simple solutions of which the matrix size is at most
5.

For fixed matrix size n, finding solutions in \mathbf{rep}~B_3 is the same as solving a system of n^2 cubic
polynomial relations in 2n^2
unknowns, which quickly becomes a daunting task. Algebraic geometry
tells us that all solutions, say \mathbf{rep}_n~B_3 form an affine closed subvariety of n^2-dimensional affine space. If we assume that \mathbf{rep}_n~B_3 is a smooth variety (that is, a manifold) and
if we know one solution explicitly, then we can use the tangent space in
this point to linearize the problem and to get at all solutions in a
neighborhood.

So, here is an idea : assume that \mathbf{rep}~B_3 itself would be a non-commutative manifold, then
we might linearize our problem by considering tangent spaces and obtain
new solutions out of already known ones. But, what is a non-commutative
manifold? Well, by the above we at least require that for all integers n
the commutative variety \mathbf{rep}_n~B_3 is a commutative manifold.

But, there
is still some redundancy in our problem : if (X,Y) is a
solution, then so is any conjugated pair (g^{-1}Xg,g^{-1}Yg) where g \in
GL_n is a basechange matrix. In categorical terms, we are only
interested in isomorphism classes of solutions. Again, if we fix the
size n of matrix-solutions, we consider the affine variety \mathbf{rep}_n~B_3 as a variety with a GL_n-action
and we like to classify the orbits of simple solutions. If \mathbf{rep}_n~B_3 is a manifold then the theory of Luna slices
provides a method, both to linearize the problem as well as to reduce
its complexity. Instead of the tangent space we consider the normal
space N to the GL_n-orbit
(in a suitable solution). On this affine space, the stabilizer subgroup
GL(\alpha) acts and there is a natural one-to-one
correspondence between GL_n-orbits
in \mathbf{rep}_n~B_3 and GL(\alpha)-orbits in the normal space N (at least in a
neighborhood of the solution).

So, here is a refinement of the
idea : we would like to view \mathbf{rep}~B_3 as a non-commutative manifold with a group action
given by the notion of isomorphism. Then, in order to get new isoclasses
of solutions from a constructed one we want to reduce the size of our
problem by considering a linearization (the normal space to the orbit)
and on it an easier isomorphism problem.

However, we immediately
encounter a problem : calculating ranks of Jacobians we discover that
already \mathbf{rep}_2~B_3 is not a smooth variety so there is not a
chance in the world that \mathbf{rep}~B_3 might be a useful non-commutative manifold.
Still, if (X,Y) is a
solution to the braid relation, then the matrix (XYX)^2
commutes with both X and Y.

If (X,Y) is a
simple solution, this means that after performing a basechange, C=(XYX)^2 becomes a scalar matrix, say \lambda^6 1_n. But then, (X_1,Y_1) =
(\lambda^{-1}X,\lambda^{-1}Y) is a solution to

XYX = YXY , (XYX)^2 = 1

and all such solutions form a
non-commutative closed subvariety, say \mathbf{rep}~\Gamma of \mathbf{rep}~B_3 and if we know all (isomorphism classes of)
simple solutions in \mathbf{rep}~\Gamma we have solved our problem as we just have to
bring in the additional scalar \lambda \in \mathbb{C}^*.

Here we strike gold : \mathbf{rep}~\Gamma is indeed a non-commutative manifold. This can
be seen by identifying \Gamma
with one of the most famous discrete infinite groups in mathematics :
the modular group PSL_2(\mathbb{Z}). The modular group acts by Mobius
transformations on the upper half plane and this action can be used to
write PSL_2(\mathbb{Z}) as the free group product \mathbb{Z}_2 \ast \mathbb{Z}_3. Finally, using
classical representation theory of finite groups it follows that indeed
all \mathbf{rep}_n~\Gamma are commutative manifolds (possibly having
many connected components)! So, let us try to linearize this problem by
looking at its non-commutative tangent space, if we can figure out what
this might be.

Here is another idea (or rather a dogma) : in the
world of non-commutative manifolds, the role of affine spaces is played
by \mathbf{rep}~Q the representations of finite quivers Q. A quiver
is just on oriented graph and a representation of it assigns to each
vertex a finite dimensional vector space and to each arrow a linear map
between the vertex-vector spaces. The notion of isomorphism in \mathbf{rep}~Q is of course induced by base change actions in all
of these vertex-vector spaces. (to be continued)

Leave a Comment