Skip to content →

Tag: moduli

2006 paper nominees

Here are
my nominees for the 2006 paper of the year award in mathematics &
mathematical physics : in math.RA : math.RA/0606241
: Notes on A-infinity
algebras, A-infinity categories and non-commutative geometry. I
by

Maxim Kontsevich
and
Yan Soibelman
. Here is the abstract :

We develop
geometric approach to A-infinity algebras and A-infinity categories
based on the notion of formal scheme in the category of graded vector
spaces. Geometric approach clarifies several questions, e.g. the notion
of homological unit or A-infinity structure on A-infinity functors. We
discuss Hochschild complexes of A-infinity algebras from geometric point
of view. The paper contains homological versions of the notions of
properness and smoothness of projective varieties as well as the
non-commutative version of Hodge-to-de Rham degeneration conjecture. We
also discuss a generalization of Deligne’s conjecture which includes
both Hochschild chains and cochains. We conclude the paper with the
description of an action of the PROP of singular chains of the
topological PROP of 2-dimensional surfaces on the Hochschild chain
complex of an A-infinity algebra with the scalar product (this action is
more or less equivalent to the structure of 2-dimensional Topological
Field Theory associated with an “abstract” Calabi-Yau
manifold).

why ? : Because this paper
probably gives the correct geometric object associated to a
non-commutative algebra (a huge coalgebra) and consequently the right
definition of a map between noncommutative affine schemes. In a previous post (and its predecessors) I’ve
tried to explain how this links up with my own interpretation and since
then I’ve thought more about this, but that will have to wait for
another time. in hep-th : hep-th/0611082 : Children’s Drawings From
Seiberg-Witten Curves
by Sujay K. Ashok, Freddy Cachazo, Eleonora
Dell’Aquila. Here is the abstract :

We consider N=2
supersymmetric gauge theories perturbed by tree level superpotential
terms near isolated singular points in the Coulomb moduli space. We
identify the Seiberg-Witten curve at these points with polynomial
equations used to construct what Grothendieck called “dessins
d’enfants” or “children’s drawings” on the Riemann
sphere. From a mathematical point of view, the dessins are important
because the absolute Galois group Gal(\bar{Q}/Q) acts faithfully on
them. We argue that the relation between the dessins and Seiberg-Witten
theory is useful because gauge theory criteria used to distinguish
branches of N=1 vacua can lead to mathematical invariants that help to
distinguish dessins belonging to different Galois orbits. For instance,
we show that the confinement index defined in hep-th/0301006 is a Galois
invariant. We further make some conjectures on the relation between
Grothendieck’s programme of classifying dessins into Galois orbits and
the physics problem of classifying phases of N=1 gauge theories.

why ? : Because this paper gives the
best introduction I’ve seen to Grothendieck’s dessins d’enfants
(slightly overdoing it by giving a crash course on elementary Galois
theory in appendix A) and kept me thinking about dessins and their
Galois invariants ever since (again, I’ll come back to this later).

Leave a Comment

MyLife@300dpi

Three years ago I did spend three weeks next to my Canonscan, painstakingly scanning all individual pages of every preprint I ever wrote. Next, I converted every page to PDF, resized it (in order to control the size) and bundled them into PDF-files. A typical preprint would take me roughly three quarters of an hour and the final result was mediocre. For example, here a blown-up sample from the original 1992 ‘Moduli
spaces of right ideals of the Weyl algebra’ -preprint, resulting in a 1.7Mb PDF-file

Recentlty, the department bought a Ricoh-copier which makes scanning a lot more fun. To scan a preprint at 300dpi and convert it into a single PDF-file takes under a minute (actually, downloading the file using a web-interface takes longer…). For this particular preprint, the resulting PDF-file took up 1.2Mb and looks a lot nicer

Still, 1.2Mb is a huge file but converting it to a DjVu-file (DjVu=deja vu) using the handy Any2DjVu Service gives us a mere 236Kb file which comes a lot closer to the filesize of a PDFLaTeX-file and the output is still very legible

So, I decided to rescan my entire life at 300dpi and convert it into DjVu. Next, I got the MOPP-package (MOPP = My Online Publications Page) working using the instructions from this page and some obvious MacOSX-modifications (if I can do it, so can you but perhaps I’ll write up the details in another post, just to remind myself). You can see the result at my homepage. I’ll update the latter one regularly (there are still some preprints missing, as are all my courses etc. and cross-references) and only afterwards I’ll update my homepage again. So far there is 250Mb to download (including all versions of the noncommutative geometry@n book, including the published ones…) so this should keep you busy for a while…

Leave a Comment

noncommutative topology (3)

For
finite dimensional hereditary algebras, one can describe its
noncommutative topology (as developed in part 2)
explicitly, using results of Markus
Reineke
in The monoid
of families of quiver representations
. Consider a concrete example,
say

$A = \begin{bmatrix} \mathbb{C} & V \\ 0 & \mathbb{C}
\end{bmatrix}$ where $V$ is an n-dimensional complex vectorspace, or
equivalently, A is the path algebra of the two point, n arrow quiver
$\xymatrix{\vtx{} \ar@/^/[r] \ar[r] \ar@/_/[r] & \vtx{}} $
Then, A has just 2 simple representations S and T (the vertex reps) of
dimension vectors s=(1,0) and t=(0,1). If w is a word in S and T we can
consider the set $\mathbf{r}_w$ of all A-representations having a
Jordan-Holder series with factors the terms in w (read from left to
right) so $\mathbf{r}_w \subset \mathbf{rep}_{(a,b)}~A$ when there are a
S-terms and b T-terms in w. Clearly all these subsets can be given the
structure of a monoid induced by concatenation of words, that is
$\mathbf{r}_w \star \mathbf{r}_{w’} = \mathbf{r}_{ww’}$ which is
Reineke’s *composition monoid*. In this case it is generated by
$\mathbf{r}_s$ and $\mathbf{r}_t$ and in the composition monoid the
following relations hold among these two generators
$\mathbf{r}_t^{\star n+1} \star \mathbf{r}_s = \mathbf{r}_t^{\star n}
\star \mathbf{r}_s \star \mathbf{r}_t \quad \text{and} \quad
\mathbf{r}_t \star \mathbf{r}_s^{\star n+1} = \mathbf{r}_s \star
\mathbf{r}_t \star \mathbf{r}_s^{\star n}$ With these notations we can
now see that the left basic open set in the noncommutative topology
(associated to a noncommutative word w in S and T) is of the form
$\mathcal{O}^l_w = \bigcup_{w’} \mathbf{r}_{w’}$ where the union is
taken over all words w’ in S and T such that in the composition monoid
the relation holds $\mathbf{r}_{w’} = \mathbf{r}_w \star \mathbf{r}_{u}$
for another word u. Hence, each op these basic opens hits a large number
of $~\mathbf{rep}_{\alpha}$, in fact far too many for our purposes….
So, what do we want? We want to define a noncommutative notion of
birationality and clearly we want that if two algebras A and B are
birational that this is the same as saying that some open subsets of
their resp. $\mathbf{rep}$’s are homeomorphic. But, what do we
understand by *noncommutative birationality*? Clearly, if A and B are
prime Noethrian, this is clear. Both have a ring of fractions and we
demand them to be isomorphic (as in the commutative case). For this
special subclass the above noncommutative topology based on the Zariski
topology on the simples may be fine.

However, most qurves don’t have
a canonical ‘ring of fractions’. Usually they will have infinitely
many simple Artinian algebras which should be thought of as being
_a_ ring of fractions. For example, in the finite dimensional
example A above, if follows from Aidan Schofield‘s work Representations of rings over skew fields that
there is one such for every (a,b) with gcd(a,b)=1 and (a,b) satisfying
$a^2+b^2-n a b < 1$ (an indivisible Shur root for A).

And
what is the _noncommutative birationality result_ we are aiming
for in each of these cases? Well, the inspiration for this comes from
another result by Aidan (although it is not stated as such in the
paper…) Birational
classification of moduli spaces of representations of quivers
. In
this paper Aidan proves that if you take one of these indivisible Schur
roots (a,b) above, and if you look at $\alpha_n = n(a,b)$ that then the
moduli space of semi-stable quiver representations for this multiplied
dimension vector is birational to the quotient variety of
$1-(a^2+b^2-nab)$-tuples of $ n \times n $-matrices under simultaneous
conjugation.

So, *morally speaking* this should be stated as the
fact that A is (along the ray determined by (a,b)) noncommutative
birational to the free algebra in $1-(a^2+b^2-nab)$ variables. And we
want a noncommutative topology on $\mathbf{rep}~A$ to encode all these
facts… As mentioned before, this can be done by replacing simples with
bricks (or if you want Schur representations) but that will have to wait
until next week.

Leave a Comment