Skip to content →

Tag: mac

Archimedes’ stomachion

The Archimedes codex is a good read, especially when you are (like me) a failed archeologist. The palimpsest (Greek for ‘scraped again’) is the worlds first Kyoto-approved ‘sustainable writing’. Isn’t it great to realize that one of the few surviving texts by Archimedes only made it because some monks recycled an old medieval parchment by scraping off most of the text, cutting the pages in half, rebinding them and writing a song-book on them…

The Archimedes-text is barely visible as vertical lines running through the song-lyrics. There is a great website telling the story in all its detail.

Contrary to what the books claims I don’t think we will have to rewrite maths history. Didn’t we already know that the Greek were able to compute areas and volumes by approximating them with polygons resp. polytopes? Of course one might view this as a precursor to integral calculus… And then the claim that Archimedes invented ordinal calculus. Sure the Greek knew that there were ‘as many’ even integers than integers… No, for me the major surprise was their theory about the genesis of mathematical notation.

The Greek were pure ASCII mathematicians : they wrote their proofs out in full text. Now, here’s an interesting theory how symbols got into maths… pure laziness of the medieval monks transcribing the old works! Copying a text was a dull undertaking so instead of repeating ‘has the same ratio as’ for the 1001th time, these monks introduced abbreviations like $\Sigma $ instead… and from then on things got slightly out of hand.

Another great chapter is on the stomachion, perhaps the oldest mathematical puzzle. Just a few pages made in into the palimpsest so we do not really know what (if anything) Archimedes had to say about it, but the conjecture is that he was after the number of different ways one could make a square with the following 14 pieces

People used computers to show that the total number is $17152=2^8 \times 67 $. The 2-power is hardly surprising in view of symmetries of the square (giving $8 $) and the fact that one can flip one of the two vertical or diagonal parts in the alternative description of the square

but I sure would like to know where the factor 67 is coming from… The MAA and UCSD have some good pages related to the stomachion puzzle. Finally, the book also views the problema bovinum as an authentic Archimedes, so maybe I should stick to my promise to blog about it, after all…

One Comment

vacation reading (2)

Vacation is always a good time to catch up on some reading. Besides, there’s very little else you can do at night in a ski-resort… This year, I’ve taken along The Archimedes Codex: Revealing The Secrets Of The World’s Greatest Palimpsest by Reviel Netz and William Noel telling the story of the Archimedes Palimpsest.

The most remarkable of the above works is The Method, of which the palimpsest contains the only known copy. In his other works, Archimedes often proves the equality of two areas or volumes with his method of double contradiction: assuming that the first is bigger than the second leads to a contradiction, as does the assumption that the first be smaller than the second; so the two must be equal. These proofs, still considered to be rigorous and correct, used what we might now consider secondary-school geometry with rare brilliance. Later writers often criticized Archimedes for not explaining how he arrived at his results in the first place. This explanation is contained in The Method.
Essentially, the method consists in dividing the two areas or volumes in infinitely many stripes of infinitesimal width, and “weighing” the stripes of the first figure against those of the second, evaluated in terms of a finite Egyptian fraction series. He considered this method as a useful heuristic but always made sure to prove the results found in this manner using the rigorous arithmetic methods mentioned above.
He was able to solve problems that would now be treated by integral calculus, which was formally invented in the 17th century by Isaac Newton and Gottfried Leibniz, working independently. Among those problems were that of calculating the center of gravity of a solid hemisphere, the center of gravity of a frustum of a circular paraboloid, and the area of a region bounded by a parabola and one of its secant lines. Contrary to exaggerations found in some 20th century calculus textbooks, he did not use anything like Riemann sums, either in the work embodied in this palimpsest or in any of his other works. (For explicit details of the method used, see Archimedes’ use of infinitesimals.)
A problem solved exclusively in the Method is the calculation of the volume of a cylindrical wedge, a result that reappears as theorem XVII (schema XIX) of Kepler’s Stereometria.
Some pages of the Method remained unused by the author of the Palimpsest and thus they are still lost. Between them, an announced result concerned the volume of the intersection of two cylinders, a figure that Apostol and Mnatsakian have renamed n = 4 Archimedean globe (and the half of it, n = 4 Archimedean dome), whose volume relates to the n-polygonal pyramid.
In Heiberg’s time, much attention was paid to Archimedes’ brilliant use of infinitesimals to solve problems about areas, volumes, and centers of gravity. Less attention was given to the Stomachion, a problem treated in the Palimpsest that appears to deal with a children’s puzzle. Reviel Netz of Stanford University has argued that Archimedes discussed the number of ways to solve the puzzle. Modern combinatorics leads to the result that this number is 17,152. Due to the fragmentary state of the palimpsest it is unknown whether or not Archimedes came to the same result. This may have been the most sophisticated work in the field of combinatorics in Greek antiquity.

Also I hope to finish the novel Interred with their bones by Jennifer Lee Carrell (though I prefer the Dutch title, “Het Shakespeare Geheim” that is, “The Shakespeare Secret”) on a lost play by Shakespeare, and have a re-read of The music of the primes as I’ll use this book for my course starting next week.

2 Comments

block google analytics cookies

When more than 200.000 websites are using google analytics, a one-man action proposed last time to de-activate GA on neverendingbooks is pretty useless. Perhaps a better alternative is :

When you use google analytics on your site, announce this and add a link to CustomizeGoogle BLOCK GOOGLE ANALYTICS COOKIES. Your visitors can then decide whether or not to block google analytics cookies only.

Or link to this post, as I’ll give a detailed step-by-step instruction so that even web-newbies can protect themselves agains google analytics stalking cookies.

1. Surf using a Firefox-clone Because CustomizeGoogle “is a Firefox extension that enhances Google search results by adding extra information (like links to Yahoo, Ask.com, MSN etc) and removing unwanted information (like ads and spam)” it only works on Firefox-like browsers. Screenshots below use Flock, the mac “social web browser”.

2. Go to CustomizeGoogle BLOCK GOOGLE ANALYTICS COOKIES and click on the Install Now! link (upper right)

3. A warning message will appear saying “Flock prevented this site from asking you to install software on your computer”. As we do want to install, click on the Edit Options button (on the left).

4. A pop-up window appears and click on the allow-button.

5. Click again on the Install Now! link from CustomizeGoogle. A pop-up will appear asking you to confirm installation of the extension. Click on the install-buttom (right below).

6. Installation complete! But you have to restart before you can use it. Click on the restart button and Flock will do it.

7. Select under Flock/Tools CustomizeGoogle Options.

8. A pane pops up with plenty of configurable options.

9. Select “Privacy” and mark the ‘Don’t send any cookies to GoogleAnalytics’ option.

10. Done! You can now surf to any of the 200.000+ google-analytics-powered sites without being stalked!

Using this feature makes you more anonymous. But your visit on a single webpage can still be logged. This way, both Google and the owner of the website knows that someone visited a webpage, but it’s difficult to track all pages you’re visiting. And it’s really really hard for Google to track that you visited both Website A and Website B.

2 Comments