Skip to content →

Tag: mac

connected

If this message gets posted it will mean that I finally
succeeded in connecting LeTravers to the rest of the world…
Clearly not via cable but using good old dial-in. I don't think
I'll ever see cable appearing here.

Electricity made it
appearance here only 10 years ago (and is an end-of-network setup
meaning that if two people on the mountain use a microwave, all lights
are dimmed…) and since 5 years one can reach us by telephone.

Since then I've been trying to get email working using
all sorts of (Belgian) dial-in adresses but nothing worked, the modem
didn't seem to be working. It turned out that in France you first
have to buy a special socket for the telephone outlet (costs 50FF)
which our neighbors promised to provide by the next time we came
along.

So, next time expectations were high and sure enough
I could hear the typical modem-noises until they got into an infinite
loop without ever making the connection.

Some people were
luckier but then they used a Windows-clone and even mimicking their
connection on a Mac didn't work. For some mysterious reason it
seemed that Macintosh computers (or at least their modems) were
incompatible with FranceTelecom.

Last week I did try
another option : I got a webpage with all free internet providers and
applied for a username-password with two of them (FreeFrance and
Tiscali). FreeFrance promised to send a package with the post whereas
Tiscali immediately replied with a dial-in nummer, username and
allowed me to set up my own password.

So, after driving
1000km (half of which in the pouring rain) and enjoying a glass of
rose outside in the setting sun (picture) I tried the Tiscali
connection without too much hope, but I think it works.

It
was a beautiful sunny afternoon (it seems it has been raining here
more or less continuously for the last three weeks) but at sunset the
clouds were rather threatening and sure enough the following day
(sunday) we spend the day within rain clouds.

Leave a Comment

some smaller steps

It
always amazes me how much time I have to waste in trying to get
tech-stuff (such as this weblog) working the way I want. You will barely
notice it but again I spend too much time delving in PHP-scripts,
sometimes with minor success, most of the time almost wrecking this
weblog…

An example : it took me a day to figure out why
this page said there was just 1 visitor online whereas log files showed
otherwise. The PHP-script I used checked this by looking at the
IP-address via _REMOTE_ADDR_ which is perfectly OK on an ordinary
Mac OS 10.3 machine, but _not_ on an OS X-Server! For some reason
it gives as the REMOTE_ADDR just the IP address of the Server (that
is, www.matrix.ua.ac.be in this case) so whoever came by this page got
tagged as 143.129.75.209 and so the script thought there was just one
person around… The trivial way around it is changing every
occurence of REMOTE_ADDR by _HTTP_PC_REMOTE_ADDR_.
Easy enough but it took me a while to figure it out.

Another
example : over the week-end this weblog got a stalker! There were over
100 hits from 38.113.198.9, so whoever that is really liked this site
but didn't have time to read a thing… Again, the standard
solution is to ban the IP-address and most weblog-packages have such a
tool on their admin-page. But whathever I tried and Googled WordPress doesn't seem to have it
on board. There were a few hacks and plugins around claiming to do
something about it but none of them worked! So, I tried more drastic
actions such as editing .htaccess files which I thought would solve
everything (again, no problem under 10.3 but _not_ under
10.3-Server!). Once more, a couple of hours lost trying to figure out
how to get the firewall of a Mac-Server do what I needed. The upshot is
that I know now all dark secrets of the _ipfw_ command, so no
more stalking around this site…

In the process of
grounding my stalker, I decided that I needed better site-stats than my
homemade log-file provided. Fortunetely, this time I picked a package
that worked without too much hassle (one more time I had to make the
REMOTE_ADDR substitution but apart from that all went well). You will
see not too much of the power of this stats-package on the page (apart
from the global counter), I feel that such things are best forgotten
until something strange occurs (like stalkers, spammers and other
weirdos). A nice side-effect though was that for the first time I had a
look at _referring pages_, that is the URL leading to this weblog.
Lots of Google searches (some strange ones) but today there were also a
number of referrals from a Chinese blog. I checked it out and it turned
out to be the brand new Math is Math! Life is Life! weblog…

Another time
consuming thing was getting the BBC-news RSS feeds working in the
sidebar, so that you still get _some_ feel for reality while
being trapped here. I am not yet satisfied with the layout under
Explorer, but then everyone should move on to Safari (so I did give up
trying to work out the PHP-script).

But most time I wasted on
something that so far has left no trace whatsoever here. A plugin that
allows specific posts to be read only by registered users (of a certain
'level', that is WordPress can give users a level from 0 to 10
with specific degrees of freedom). But clearly at the same time I wanted
the rest of the world to have at least some indication of what they were
missing (such as a title with a nice padlock next to it) but so far I
didn't get it working. The only trace of a closed posting would be
in the sidebar-listing of the ten last posts but gives an error message
when an unauthorized user clicks on it. So, still a lot of
headache-sensitive work left to do, but it is about time to get back to
mathematics…

update (febr. 2007) : the
padlock-idea is abandoned.

Leave a Comment

quiver representations

In what
way is a formally smooth algebra a _machine_ producing families of
manifolds? Consider the special case of the path algebra $\mathbb{C} Q$ of a
quiver and recall that an $n$-dimensional representation is an algebra
map $\mathbb{C} Q \rightarrow^{\phi} M_n(\mathbb{C})$ or, equivalently, an
$n$-dimensional left $\mathbb{C} Q$-module $\mathbb{C}^n_{\phi}$ with the action
determined by the rule $a.v = \phi(a) v~\forall v \in \mathbb{C}^n_{\phi},
\forall a \in \mathbb{C} Q$ If the $e_i~1 \leq i \leq k$ are the idempotents
in $\mathbb{C} Q$ corresponding to the vertices (see this [post][1]) then we get
a direct sum decomposition $\mathbb{C}^n_{\phi} = \phi(e_1)\mathbb{C}^n_{\phi} \oplus
\ldots \oplus \phi(e_k)\mathbb{C}^n_{\phi}$ and so every $n$-dimensional
representation does determine a _dimension vector_ $\alpha =
(a_1,\ldots,a_k)~\text{with}~a_i = dim_{\mathbb{C}} V_i = dim_{\mathbb{C}}
\phi(e_i)\mathbb{C}^n_{\phi}$ with $ | \alpha | = \sum_i a_i = n$. Further,
for every arrow $\xymatrix{\vtx{e_i} \ar[rr]^a & &
\vtx{e_j}} $ we have (because $e_j.a.e_i = a$ that $\phi(a)$
defines a linear map $\phi(a)~:~V_i \rightarrow V_j$ (that was the
whole point of writing paths in the quiver from right to left so that a
representation is determined by its _vertex spaces_ $V_i$ and as many
linear maps between them as there are arrows). Fixing vectorspace bases
in the vertex-spaces one observes that the space of all
$\alpha$-dimensional representations of the quiver is just an affine
space $\mathbf{rep}_{\alpha}~Q = \oplus_a~M_{a_j \times a_i}(\mathbb{C})$ and
base-change in the vertex-spaces does determine the action of the
_base-change group_ $GL(\alpha) = GL_{a_1} \times \ldots \times
GL_{a_k}$ on this space. Finally, as all this started out with fixing
a bases in $\mathbb{C}^n_{\phi}$ we get the affine variety of all
$n$-dimensional representations by bringing in the base-change
$GL_n$-action (by conjugation) and have $\mathbf{rep}_n~\mathbb{C} Q =
\bigsqcup_{| \alpha | = n} GL_n \times^{GL(\alpha)}
\mathbf{rep}_{\alpha}~Q$ and in this decomposition the connected
components are no longer just affine spaces with a groupaction but
essentially equal to them as there is a natural one-to-one
correspondence between $GL_n$-orbits in the fiber-bundle $GL_n
\times^{GL(\alpha)} \mathbf{rep}_{\alpha}~Q$ and $GL(\alpha)$-orbits in the
affine space $\mathbf{rep}_{\alpha}~Q$. In our main example
$\xymatrix{\vtx{e} \ar@/^/[rr]^a & & \vtx{f} \ar@(u,ur)^x
\ar@(d,dr)_y \ar@/^/[ll]^b} $ an $n$-dimensional representation
determines vertex-spaces $V = \phi(e) \mathbb{C}^n_{\phi}$ and $W = \phi(f)
\mathbb{C}^n_{\phi}$ of dimensions $p,q~\text{with}~p+q = n$. The arrows
determine linear maps between these spaces $\xymatrix{V
\ar@/^/[rr]^{\phi(a)} & & W \ar@(u,ur)^{\phi(x)} \ar@(d,dr)_{\phi(y)}
\ar@/^/[ll]^{\phi(b)}} $ and if we fix a set of bases in these two
vertex-spaces, we can represent these maps by matrices
$\xymatrix{\mathbb{C}^p \ar@/^/[rr]^{A} & & \mathbb{C}^q \ar@(u,ur)^{X}
\ar@(d,dr)_{Y} \ar@/^/[ll]^{B}} $ which can be considered as block
$n \times n$ matrices $a \mapsto \begin{bmatrix} 0 & 0 \\ A & 0
\end{bmatrix}~b \mapsto \begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$
$x \mapsto \begin{bmatrix} 0 & 0 \\ 0 & X \end{bmatrix}~y \mapsto
\begin{bmatrix} 0 & 0 \\ 0 & Y \end{bmatrix}$ The basechange group
$GL(\alpha) = GL_p \times GL_q$ is the diagonal subgroup of $GL_n$
$GL(\alpha) = \begin{bmatrix} GL_p & 0 \\ 0 & GL_q \end{bmatrix}$ and
acts on the representation space $\mathbf{rep}_{\alpha}~Q = M_{q \times
p}(\mathbb{C}) \oplus M_{p \times q}(\mathbb{C}) \oplus M_q(\mathbb{C}) \oplus M_q(\mathbb{C})$
(embedded as block-matrices in $M_n(\mathbb{C})^{\oplus 4}$ as above) by
simultaneous conjugation. More generally, if $A$ is a formally smooth
algebra, then all its representation varieties $\mathbf{rep}_n~A$ are
affine smooth varieties equipped with a $GL_n$-action. This follows more
or less immediately from the definition and [Grothendieck][2]\’s
characterization of commutative regular algebras. For the record, an
algebra $A$ is said to be _formally smooth_ if for every algebra map $A
\rightarrow B/I$ with $I$ a nilpotent ideal of $B$ there exists a lift
$A \rightarrow B$. The path algebra of a quiver is formally smooth
because for every map $\phi~:~\mathbb{C} Q \rightarrow B/I$ the images of the
vertex-idempotents form an orthogonal set of idempotents which is known
to lift modulo nilpotent ideals and call this lift $\psi$. But then also
every arrow lifts as we can send it to an arbitrary element of
$\psi(e_j)\pi^{-1}(\phi(a))\psi(e_i)$. In case $A$ is commutative and
$B$ is allowed to run over all commutative algebras, then by
Grothendieck\’s criterium $A$ is a commutative regular algebra. This
also clarifies why so few commutative regular algebras are formally
smooth : being formally smooth is a vastly more restrictive property as
the lifting property extends to all algebras $B$ and whenever the
dimension of the commutative variety is at least two one can think of
maps from its coordinate ring to the commutative quotient of a
non-commutative ring by a nilpotent ideal which do not lift (for an
example, see for example [this preprint][3]). The aim of
non-commutative algebraic geometry is to study _families_ of manifolds
$\mathbf{rep}_n~A$ associated to the formally-smooth algebra $A$. [1]:
http://www.matrix.ua.ac.be/wp-trackback.php/10 [2]:
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Grothendieck.
html [3]: http://www.arxiv.org/abs/math.AG/9904171

One Comment