Skip to content →

Tag: Grothendieck

From Weil’s foundations to schemes

Last time, we’ve seen that the first time ‘schemes’ were introduced was in ‘La Tribu’ (the internal Bourbaki-account of their congresses) of the May-June 1955 congress in Chicago.

Here, we will focus on the events leading up to that event. If you always thought Grothendieck invented the word ‘schemes’, here’s what Colin McLarty wrote:

“A story says that in a Paris café around 1955 Grothendieck asked his friends “what is a scheme?”. At the time only an undefined idea of “schéma” was current in Paris, meaning more or less whatever would improve on Weil’s foundations.” (McLarty in The Rising Sea)

What were Weil’s foundations of algebraic geometry?

Well, let’s see how Weil defined an affine variety over a field $k$. First you consider a ‘universal field’ $K$ containing $k$, that is, $K$ is an algebraically closed field of infinite transcendence degree over $k$. A point of $n$-dimensional affine space is an $n$-tuple $x=(x_1,\dots,x_n) \in K^n$. For such a point $x$ you consider the field $k(x)$ which is the subfield of $K$ generated by $k$ and the coordinates $x_i$ of $x$.

Alternatively, the field $k(x)$ is the field of fractions of the affine domain $R=k[z_1,\dots,z_n]/I$ where $I$ is the prime ideal of all polynomials $f \in k[z_1,\dots,z_n]$ such that $f(x) = f(x_1,\dots,x_n)=0$.

An affine $k$-variety $V$ is associated to a ‘generic point’ $x=(x_1,\dots,x_n)$, meaning that the field $k(x)$ is a ‘regular extension’ of $k$ (that is, for all field-extensions $k’$ of $k$, the tensor product $k(x) \otimes_k k’$ does not contain zero-divisors.

The points of $V$ are the ‘specialisations’ of $x$, that is, all points $y=(y_1,\dots,y_n)$ such that $f(y_1,\dots,y_n)=0$ for all $f \in I$.

Perhaps an example? Let $k = \mathbb{Q}$ and $K=\mathbb{C}$ and take $x=(i,\pi)$ in the affine plane $\mathbb{C}^2$. What is the corresponding prime ideal $I$ of $\mathbb{Q}[z_1,z_2]$? Well, $i$ is a solution to $z_1^2+1=0$ whereas $\pi$ is transcendental over $\mathbb{Q}$, so $I=(z_1^2+1)$ and $R=\mathbb{Q}[z_1,z_2]/I= \mathbb{Q}(i)[z_2]$.

Is $x=(i,\pi)$ a generic point? Well, suppose it were, then the points of the corresponding affine variety $V$ would be all couples $(\pm i, \lambda)$ with $\lambda \in \mathbb{C}$ which is the union of two lines in $\mathbb{C}^2$. But then $i \otimes 1 + 1 \otimes i$ is a zero-divisor in $\mathbb{Q}(x) \otimes_{\mathbb{Q}} \mathbb{Q}(i)$. So no, it is not a generic point over $\mathbb{Q}$ and does not define an affine $\mathbb{Q}$-variety.

If we would have started with $k=\mathbb{Q}(i)$, then $x=(i,\pi)$ is generic and the corresponding affine variety $V$ consists of all points $(i,\lambda) \in \mathbb{C}^2$.

If this is new to you, consider yourself lucky to be young enough to have learned AG from Fulton’s Algebraic curves, or Hartshorne’s chapter 1 if you were that ambitious.

By 1955, Serre had written his FAC, and Bourbaki had developed enough commutative algebra to turn His attention to algebraic geometry.

La Ciotat congress (February 27th – March 6th, 1955)

With a splendid view on the mediterranean, a small group of Bourbaki members (Henri Cartan (then 51), with two of his former Ph.D. students: Jean-Louis Koszul (then 34), and Jean-Pierre Serre (then 29, and fresh Fields medaillist), Jacques Dixmier (then 31), and Pierre Samuel (then 34), a former student of Zariski’s) discussed a previous ‘Rapport de Geometrie Algebrique'(no. 206) and arrived at some unanimous decisions:

1. Algebraic varieties must be sets of points, which will not change at every moment.
2. One should include ‘abstract’ varieties, obtained by gluing (fibres, etc.).
3. All necessary algebra must have been previously proved.
4. The main application of purely algebraic methods being characteristic p, we will hide nothing of the unpleasant phenomena that occur there.



(Henri Cartan and Jean-Pierre Serre, photo by Paul Halmos)

The approach the propose is clearly based on Serre’s FAC. The points of an affine variety are the maximal ideals of an affine $k$-algebra, this set is equipped with the Zariski topology such that the local rings form a structure sheaf. Abstract varieties are then constructed by gluing these topological spaces and sheaves.

At the insistence of the ‘specialistes’ (Serre, and Samuel who had just written his book ‘Méthodes d’algèbre abstraite en géométrie algébrique’) two additional points are adopted, but with some hesitation. The first being a jibe at Weil:
1. …The congress, being a little disgusted by the artificiality of the generic point, does not want $K$ to be always of infinite transcendent degree over $k$. It admits that generic points are convenient in certain circumstances, but refuses to see them put to all the sauces: one could speak of a coordinate ring or of a functionfield without stuffing it by force into $K$.
2. Trying to include the arithmetic case.

The last point was problematic as all their algebras were supposed to be affine over a field $k$, and they wouldn’t go further than to allow the overfield $K$ to be its algebraic closure. Further, (and this caused a lot of heavy discussions at coming congresses) they allowed their varieties to be reducible.

The Chicago congress (May 30th – June 2nd 1955)

Apart from Samuel, a different group of Bourbakis gathered for the ‘second Caucus des Illinois’ at Eckhart Hall, including three founding members Weil (then 49), Dixmier (then 49) and Chevalley (then 46), and two youngsters, Armand Borel (then 32) and Serge Lang (then 28).

Their reaction to the La Ciotat meeting (the ‘congress of the public bench’) was swift:

(page 1) : “The caucus discovered a public bench near Eckhart Hall, but didn’t do much with it.”
(page 2) : “The caucus did not judge La Ciotat’s plan beyond reproach, and proposed a completely different plan.”

They wanted to include the arithmetic case by defining as affine scheme the set of all prime ideals (or rather, the localisations at these prime ideals) of a finitely generated domain over a Dedekind domain. They continue:

(page 4) : “The notion of a scheme covers the arithmetic case, and is extracted from the illustrious works of Nagata, themselves inspired by the scholarly cogitations of Chevalley. This means that the latter managed to sell all his ideas to the caucus. The Pope of Chicago, very happy to be able to reject very far projective varieties and Chow coordinates, willingly rallied to the suggestions of his illustrious colleague. However, we have not attempted to define varieties in the arithmetic case. Weil’s principle is that it is unclear what will come out of Nagata’s tricks, and that the only stable thing in arithmetic theory is reduction modulo $p$ a la Shimura.”

“Contrary to the decisions of La Ciotat, we do not want to glue reducible stuff, nor call them varieties. … We even decide to limit ourselves to absolutely irreducible varieties, which alone will have the right to the name of varieties.”

The insistence on absolutely irreducibility is understandable from Weil’s perspective as only they will have a generic point. But why does he go along with Chevalley’s proposal of an affine scheme?

In Weil’s approach, a point of the affine variety $V$ determined by a generic point $x=(x_1,\dots,x_n)$ determines a prime ideal $Q$ of the domain $R=k[x_1,\dots,x_n]$, so Chevalley’s proposal to consider all prime ideals (rather than only the maximal ideals of an affine algebra) seems right to Weil.

However in Weil’s approach there are usually several points corresponding to the same prime ideal $Q$ of $R$, namely all possible embeddings of the ring $R/Q$ in that huge field $K$, so whenever $R/Q$ is not algebraic over $k$, there are infinitely Weil-points of $V$ corresponding to $Q$ (whence the La Ciotat criticism that points of a variety were not supposed to change at every moment).

According to Ralf Krömer in his book Tool and Object – a history and philosophy of category theory this shift from Weil-points to prime ideals of $R$ may explain Chevalley’s use of the word ‘scheme’:

(page 164) : “The ‘scheme of the variety’ denotes ‘what is invariant in a variety’.”

Another time we will see how internal discussion influenced the further Bourbaki congresses until Grothendieck came up with his ‘hyperplan’.

Leave a Comment

Le Guide Bourbaki : La Ciotat (2)

Rereading the Grothendieck-Serre correspondence I found a letter from Serre to Grothendieck, dated October 22nd 1958, which forces me to retract some claims from the previous La Ciotat post.

Serre writes this ten days after the second La Ciotat-congress (La Tribu 46), held from October 5th-12th 1958:

“The Bourbaki meeting was very pleasant; we all stayed in the home of a man called Guérin (a friend of Schwartz’s – a political one, I think); Guérin himself was in Paris and we had the whole house to ourselves. We worked outside most of the time, the weather was beautiful, we went swimming almost every day; in short, it was one of the best meetings I have ever been to.”

So far so good, we did indeed find Guérin’s property ‘Maison Rustique Olivette’ as the location of Bourbaki’s La Ciotat-congresses. But, Serre was present at both meetings (the earlier one, La Tribu 35, was held from February 27th – March 6th, 1955), so wouldn’t he have mentioned that they returned to that home when both meetings took place there?

From La Tribu 35:

“The Congress was held “chez Patrice”, in La Ciotat, from February 27 to March 6, 1955. Present: Cartan, Dixmier, Koszul, Samuel, Serre, le Tableau (property, fortunately divisible, of Bourbaki).”

In the previous post I mentioned that there was indeed a Hotel-Restaurant “Chez Patrice” in La Ciotat, but mistakingly assumed both meetings took place at Guérin’s property.

Can we locate this place?

On the backside of this old photograph

we read:

“Chez Patrice”
seul au bord de la mer
Hotel Restaurant tout confort
Spécialités Provençales
Plage privée Parc auto
Ouvert toute l’année
Sur la route de La Ciota-Bandol
Tel 465
La Ciota (B.-d.-R.)

So it must be on the scenic coastal road from La Ciotat to Bandol. My best guess is that “Chez Patrice” is today the one Michelin-star Restaurant “La Table de Nans”, located at 126 Cor du Liouquet, in La Ciotat.

Their website has just this to say about the history of the place:

“Located in an exceptional setting between La Ciotat and Saint Cyr, the building of “l’auberge du Revestel” was restored in 2016.”

And a comment on a website dedicated to the nearby Restaurant Roche Belle confirms that “Chez Patrice”, “l’auberge du Revestel” and “table de Nans” were all at the same place:

“Nous sommes locaux et avons découverts ce restaurant seulement le mois dernier (suite infos copains) alors que j’ai passé une partie de mon enfance et adolescence “chez Patrice” (Revestel puis chez Nans)!!!”

I hope to have it right this time: the first Bourbaki La Ciotat-meeting in 1955 took place “Chez Patrice” whereas the second 1958-congress was held at ‘Maison Rustique Olivette’, the property of Schwartz’s friend Daniel Guérin.

Still, if you compare Serre’s letter to this paragraph from Schwartz’s autobiography, there’s something odd:

“I knew Daniel Guérin very well until his death. Anarchist, close to Trotskyism, he later joined Marceau Prevert’s PSOP. He had the kindness, after the war, to welcome in his property near La Ciotat one of the congresses of the Bourbaki group. He shared, in complete camaraderie, our life and our meals for two weeks. I even went on a moth hunt at his house and caught a death’s-head hawk-moth (Acherontia atropos).”

Schwartz was not present at the second La Ciotat-meeting, and he claims Guérin shared meals with the Bourbakis whereas Serre says he was in Paris and they had the whole house to themselves.

Moral of the story: accounts right after the event (Serre’s letter) are more trustworthy than later recollections (Schwartz’s autobiography).

Dear Collaborators of Nicolas Bourbaki, please make all Bourbaki material (Diktat, La Tribu, versions) publicly available, certainly those documents older than 50 years.

Perhaps you can start by adding the missing numbers 36 and 49 to your La Tribu: 1940-1960 list.

Thank you!

Leave a Comment

Charlie Hebdo on Grothendieck

Charlie Hebdo, the French satirical weekly newspaper, victim of a terroristic raid in 2015, celebrates the 30th anniversary of its restart in 1992 (it appeared earlier from 1969 till 1981).

Charlie’s collaborators have looked at figures who embody, against all odds, freedom, and one of the persons they selected is Alexandre Grothendieck, ‘Alexandre Grothendieck – l’équation libertaire’. Here’s why

“A Fields Medal winner, ecology pioneer and hermit, he threw honours, money and his career away to defend his ideas.”

If you want to learn something about Grothendieck’s life and work, you’d better read the Wikipedia entry than this article.

Some of the later paragraphs are even debatable:

“But at the end of his life, total derailment, he gets lost in the meanders of madness. Is it the effect of desperation? of too much freedom? or the abuse of logic (madness is not uncommon among mathematicians, from Kürt Godel to Grigori Perelman…)? The rebel genius withdraws to a village in the Pyrenees and refuses all contact with the outside world.”

“However, he silently continues to do math. Upon his death in 2014, thousands of pages will be discovered, of which the mathematician Michel Demazure estimates that “it will take fifty years to transform [them] into accessible mathematics”.”

If you want to read more on these ‘Grothendieck gribouillis’, see here, here, here, here, here, and here.

Leave a Comment