Skip to content →

Tag: Grothendieck

This week at F_un Mathematics (1)

In case you haven’t noticed it yet : I’m not living here anymore.

My blogging is (at least for the moment) transfered to the F_un Mathematics blog which some prefer to call the “ceci n’est pas un corps”-blog, which is very fine with me.

Javier gave a talk at MPI on Soule’s approach to algebraic geometry over the elusive field with one element $\mathbb{F}_1 $ and wrote two posts about it The skeleton of Soule’s F_un geometry and Gadgets a la Soule. The rough idea being that a variety over the field with one element only acquires flesh after a base extension to $\mathbb{Z} $ and to cyclotomic integers.

I did some posts on a related (but conceptually somewhat easier) approach due to Alain Connes and Katia Consani. I’ve tried to explain their construction at the level of (mature) undergraduate students. So far, there are three posts part1, part2 and part3. Probably there is one more session to come in which I will explain why they need functors to graded sets.

In the weeks to come we plan to post about applications of this F_un-geometry to noncommutative geometry (the Bost-Connes system) and Grothendieck’s anabelian geometry (the theory of dessins d’enfant). I’ll try to leave a short account of the main posts here, but clearly you are invited to feed your feedreader this.

Perhaps I’ll return here for a week mid november to do some old-fashioned vacation blogging. I have to admit I did underestimate Numeo.fr. Rumours have it that our place is connected wirelessly to the web…

Leave a Comment

Connes-Consani for undergraduates (3)

A quick recap of last time. We are trying to make sense of affine varieties over the elusive field with one element $\mathbb{F}_1 $, which by Grothendieck’s scheme-philosophy should determine a functor

$\mathbf{nano}(N)~:~\mathbf{abelian} \rightarrow \mathbf{sets} \qquad A \mapsto N(A) $

from finite Abelian groups to sets, typically giving pretty small sets $N(A) $. Using the F_un mantra that $\mathbb{Z} $ should be an algebra over $\mathbb{F}_1 $ any $\mathbb{F}_1 $-variety determines an integral scheme by extension of scalars, as well as a complex variety (by extending further to $\mathbb{C} $). We have already connected the complex variety with the original functor into a gadget that is a couple $~(\mathbf{nano}(N),\mathbf{maxi}(R)) $ where $R $ is the coordinate ring of a complex affine variety $X_R $ having the property that every element of $N(A) $ can be realized as a $\mathbb{C} A $-point of $X_R $. Ringtheoretically this simply means that to every element $x \in N(A) $ there is an algebra map $N_x~:~R \rightarrow \mathbb{C} A $.

Today we will determine which gadgets determine an integral scheme, and do so uniquely, and call them the sought for affine schemes over $\mathbb{F}_1 $.

Let’s begin with our example : $\mathbf{nano}(N) = \underline{\mathbb{G}}_m $ being the forgetful functor, that is $N(A)=A $ for every finite Abelian group, then the complex algebra $R= \mathbb{C}[x,x^{-1}] $ partners up to form a gadget because to every element $a \in N(A)=A $ there is a natural algebra map $N_a~:~\mathbb{C}[x,x^{-1}] \rightarrow \mathbb{C} A $ defined by sending $x \mapsto e_a $. Clearly, there is an obvious integral form of this complex algebra, namely $\mathbb{Z}[x,x^{-1}] $ but we have already seen that this algebra represents the mini-functor

$\mathbf{min}(\mathbb{Z}[x,x^{-1}])~:~\mathbf{abelian} \rightarrow \mathbf{sets} \qquad A \mapsto (\mathbb{Z} A)^* $

and that the group of units $(\mathbb{Z} A)^* $ of the integral group ring $\mathbb{Z} A $ usually is a lot bigger than $N(A)=A $. So, perhaps there is another less obvious $\mathbb{Z} $-algebra $S $ doing a much better job at approximating $N $? That is, if we can formulate this more precisely…

In general, every $\mathbb{Z} $-algebra $S $ defines a gadget $\mathbf{gadget}(S) = (\mathbf{mini}(S),\mathbf{maxi}(S \otimes_{\mathbb{Z}} \mathbb{C})) $ with the obvious (that is, extension of scalars) evaluation map

$\mathbf{mini}(S)(A) = Hom_{\mathbb{Z}-alg}(S, \mathbb{Z} A) \rightarrow Hom_{\mathbb{C}-alg}(S \otimes_{\mathbb{Z}} \mathbb{C}, \mathbb{C} A) = \mathbf{maxi}(S \otimes_{\mathbb{Z}} \mathbb{C})(A) $

Right, so how might one express the fact that the integral affine scheme $X_T $ with integral algebra $T $ is the ‘best’ integral approximation of a gadget $~(\mathbf{nano}(N),\mathbf{maxi}(R)) $. Well, to begin its representing functor should at least contain the information given by $N $, that is, $\mathbf{nano}(N) $ is a sub-functor of $\mathbf{mini}(T) $ (meaning that for every finite Abelian group $A $ we have a natural inclusion $N(A) \subset Hom_{\mathbb{Z}-alg}(T, \mathbb{Z} A) $). As to the “best”-part, we must express that all other candidates factor through $T $. That is, suppose we have an integral algebra $S $ and a morphism of gadgets (as defined last time)

$f~:~(\mathbf{nano}(N),\mathbf{maxi}(R)) \rightarrow \mathbf{gadget}(S) = (\mathbf{mini}(S),\mathbf{maxi}(S \otimes_{\mathbb{Z}} \mathbb{C})) $

then there ought to be $\mathbb{Z} $-algebra morphism $T \rightarrow S $ such that the above map $f $ factors through an induced gadget-map $\mathbf{gadget}(T) \rightarrow \mathbf{gadget}(S) $.

Fine, but is this definition good enough in our trivial example? In other words, is the “obvious” integral ring $\mathbb{Z}[x,x^{-1}] $ the best integral choice for approximating the forgetful functor $N=\underline{\mathbb{G}}_m $? Well, take any finitely generated integral algebra $S $, then saying that there is a morphism of gadgets from $~(\underline{\mathbb{G}}_m,\mathbf{maxi}(\mathbb{C}[x,x^{-1}]) $ to $\mathbf{gadget}(S) $ means that there is a $\mathbb{C} $-algebra map $\psi~:~S \otimes_{\mathbb{Z}} \mathbb{C} \rightarrow \mathbb{C}[x,x^{-1}] $ such that for every finite Abelian group $A $ we have a commuting diagram

$\xymatrix{A \ar[rr] \ar[d]_e & & Hom_{\mathbb{Z}-alg}(S, \mathbb{Z} A) \ar[d] \\
Hom_{\mathbb{C}-alg}(\mathbb{C}[x,x^{-1}],\mathbb{C} A) \ar[rr]^{- \circ \psi} & & Hom_{\mathbb{C}-alg}(S \otimes_{\mathbb{Z}} \mathbb{C}, \mathbb{C} A)} $

Here, $e $ is the natural evaluation map defined before sending a group-element $a \in A $ to the algebra map defined by $x \mapsto e_a $ and the vertical map on the right-hand side is extensions by scalars. From this data we must be able to show that the image of the algebra map

$\xymatrix{S \ar[r]^{i} & S \otimes_{\mathbb{Z}} \mathbb{C} \ar[r]^{\psi} & \mathbb{C}[x,x^{-1}]} $

is contained in the integral subalgebra $\mathbb{Z}[x,x^{-1}] $. So, take any generator $z $ of $S $ then its image $\psi(z) \in \mathbb{C}[x,x^{-1}] $ is a Laurent polynomial of degree say $d $ (that is, $\psi(z) = c_{-d} x^{-d} + \ldots c_{-1} x^{-1} + c_0 + c_1 x + \ldots + c_d x^d $ with all coefficients a priori in $\mathbb{C} $ and we need to talk them into $\mathbb{Z} $).

Now comes the basic trick : take a cyclic group $A=C_N $ of order $N > d $, then the above commuting diagram applied to the generator of $C_N $ (the evaluation of which is the natural projection map $\pi~:~\mathbb{C}[x.x^{-1}] \rightarrow \mathbb{C}[x,x^{-1}]/(x^N-1) = \mathbb{C} C_N $) gives us the commuting diagram

$\xymatrix{S \ar[r] \ar[d] & S \otimes_{\mathbb{Z}} \mathbb{C} \ar[r]^{\psi} & \mathbb{C}[x,x^{-1}] \ar[d]^{\pi} \\
\mathbb{Z} C_n = \frac{\mathbb{Z}[x,x^{-1}]}{(x^N-1)} \ar[rr]^j & & \frac{\mathbb{C}[x,x^{-1}]}{(x^N-1)}} $

where the horizontal map $j $ is the natural inclusion map. Tracing $z \in S $ along the diagram we see that indeed all coefficients of $\psi(z) $ have to be integers! Applying the same argument to the other generators of $S $ (possibly for varying values of N) we see that , indeed, $\psi(S) \subset \mathbb{Z}[x,x^{-1}] $ and hence that $\mathbb{Z}[x,x^{-1}] $ is the best integral approximation for $\underline{\mathbb{G}}_m $.

That is, we have our first example of an affine variety over the field with one element $\mathbb{F}_1 $ : $~(\underline{\mathbb{G}}_m,\mathbf{maxi}(\mathbb{C}[x,x^{-1}]) \rightarrow \mathbf{gadget}(\mathbb{Z}[x,x^{-1}]) $.

What makes this example work is that the infinite group $\mathbb{Z} $ (of which the complex group-algebra is the algebra $\mathbb{C}[x,x^{-1}] $) has enough finite Abelian group-quotients. In other words, $\mathbb{F}_1 $ doesn’t see $\mathbb{Z} $ but rather its profinite completion $\hat{\mathbb{Z}} = \underset{\leftarrow} \mathbb{Z}/N\mathbb{Z} $… (to be continued when we’ll consider noncommutative $\mathbb{F}_1 $-schemes)

In general, an affine $\mathbb{F}_1 $-scheme is a gadget with morphism of gadgets
$~(\mathbf{nano}(N),\mathbf{maxi}(R)) \rightarrow \mathbf{gadget}(S) $ provided that the integral algebra $S $ is the best integral approximation in the sense made explicit before. This rounds up our first attempt to understand the Connes-Consani approach to define geometry over $\mathbb{F}_1 $ apart from one important omission : we have only considered functors to $\mathbf{sets} $, whereas it is crucial in the Connes-Consani paper to consider more generally functors to graded sets. In the final part of this series we’ll explain what that’s all about.

Leave a Comment

Connes-Consani for undergraduates (1)

A couple of weeks ago, Alain Connes and Katia Consani arXived their paper “On the notion of geometry over $\mathbb{F}_1 $”. Their subtle definition is phrased entirely in Grothendieck‘s scheme-theoretic language of representable functors and may be somewhat hard to get through if you only had a few years of mathematics.

I’ll try to give the essence of their definition of an affine scheme over $\mathbb{F}_1 $ (and illustrate it with an example) in a couple of posts. All you need to know is what a finite Abelian group is (if you know what a cyclic group is that’ll be enough) and what a commutative algebra is. If you already know what a functor and a natural transformation is, that would be great, but we’ll deal with all that abstract nonsense when we’ll need it.

So take two finite Abelian groups A and B, then a group-morphism is just a map $f~:~A \rightarrow B $ preserving the group-data. That is, f sends the unit element of A to that of B and
f sends a product of two elements in A to the product of their images in B. For example, if $A=C_n $ is a cyclic group of order n with generator g and $B=C_m $ is a cyclic group of order m with generator h, then every groupmorphism from A to B is entirely determined by the image of g let’s say that this image is $h^i $. But, as $g^n=1 $ and the conditions on a group-morphism we must have that $h^{in} = (h^i)^n = 1 $ and therefore m must divide i.n. This gives you all possible group-morphisms from A to B.

They are plenty of finite abelian groups and many group-morphisms between any pair of them and all this stuff we put into one giant sack and label it $\mathbf{abelian} $. There is another, even bigger sack, which is even simpler to describe. It is labeled $\mathbf{sets} $ and contains all sets as well as all maps between two sets.

Right! Now what might be a map $F~:~\mathbf{abelian} \rightarrow \mathbf{sets} $ between these two sacks? Well, F should map any abelian group A to a set F(A) and any group-morphism $f~:~A \rightarrow B $ to a map between the corresponding sets $F(f)~:~F(A) \rightarrow F(B) $ and do all of this nicely. That is, F should send compositions of group-morphisms to compositions of the corresponding maps, and so on. If you take a pen and a piece of paper, you’re bound to come up with the exact definition of a functor (that’s what F is called).

You want an example? Well, lets take F to be the map sending an Abelian group A to its set of elements (also called A) and which sends a groupmorphism $A \rightarrow B $ to the same map from A to B. All F does is ‘forget’ the extra group-conditions on the sets and maps. For this reason F is called the forgetful functor. We will denote this particular functor by $\underline{\mathbb{G}}_m $, merely to show off.

Luckily, there are lots of other and more interesting examples of such functors. Our first class we will call maxi-functors and they are defined using a finitely generated $\mathbb{C} $-algebra R. That is, R can be written as the quotient of a polynomial algebra

$R = \frac{\mathbb{C}[x_1,\ldots,x_d]}{(f_1,\ldots,f_e)} $

by setting all the polynomials $f_i $ to be zero. For example, take R to be the ring of Laurant polynomials

$R = \mathbb{C}[x,x^{-1}] = \frac{\mathbb{C}[x,y]}{(xy-1)} $

Other, and easier, examples of $\mathbb{C} $-algebras is the group-algebra $\mathbb{C} A $ of a finite Abelian group A. This group-algebra is a finite dimensional vectorspace with basis $e_a $, one for each element $a \in A $ with multiplication rule induced by the relations $e_a.e_b = e_{a.b} $ where on the left-hand side the multiplication . is in the group-algebra whereas on the right hand side the multiplication in the index is that of the group A. By choosing a different basis one can show that the group-algebra is really just the direct sum of copies of $\mathbb{C} $ with component-wise addition and multiplication

$\mathbb{C} A = \mathbb{C} \oplus \ldots \oplus \mathbb{C} $

with as many copies as there are elements in the group A. For example, for the cyclic group $C_n $ we have

$\mathbb{C} C_n = \frac{\mathbb{C}[x]}{(x^n-1)} = \frac{\mathbb{C}[x]}{(x-1)} \oplus \frac{\mathbb{C}[x]}{(x-\zeta)} \oplus \frac{\mathbb{C}[x]}{(x-\zeta^2)} \oplus \ldots \oplus \frac{\mathbb{C}[x]}{(x-\zeta^{n-1})} = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \ldots \oplus \mathbb{C} $

The maxi-functor asociated to a $\mathbb{C} $-algebra R is the functor

$\mathbf{maxi}(R)~:~\mathbf{abelian} \rightarrow \mathbf{sets} $

which assigns to a finite Abelian group A the set of all algebra-morphism $R \rightarrow \mathbb{C} A $ from R to the group-algebra of A. But wait, you say (i hope), we also needed a functor to do something on groupmorphisms $f~:~A \rightarrow B $. Exactly, so to f we have an algebra-morphism $f’~:~\mathbb{C} A \rightarrow \mathbb{C}B $ so the functor on morphisms is defined via composition

$\mathbf{maxi}(R)(f)~:~\mathbf{maxi}(R)(A) \rightarrow \mathbf{maxi}(R)(B) \qquad \phi~:~R \rightarrow \mathbb{C} A \mapsto f’ \circ \phi~:~R \rightarrow \mathbb{C} A \rightarrow \mathbb{C} B $

So, what is the maxi-functor $\mathbf{maxi}(\mathbb{C}[x,x^{-1}] $? Well, any $\mathbb{C} $-algebra morphism $\mathbb{C}[x,x^{-1}] \rightarrow \mathbb{C} A $ is fully determined by the image of $x $ which must be a unit in $\mathbb{C} A = \mathbb{C} \oplus \ldots \oplus \mathbb{C} $. That is, all components of the image of $x $ must be non-zero complex numbers, that is

$\mathbf{maxi}(\mathbb{C}[x,x^{-1}])(A) = \mathbb{C}^* \oplus \ldots \oplus \mathbb{C}^* $

where there are as many components as there are elements in A. Thus, the sets $\mathbf{maxi}(R)(A) $ are typically huge which is the reason for the maxi-terminology.

Next, let us turn to mini-functors. They are defined similarly but this time using finitely generated $\mathbb{Z} $-algebras such as $S=\mathbb{Z}[x,x^{-1}] $ and the integral group-rings $\mathbb{Z} A $ for finite Abelian groups A. The structure of these inegral group-rings is a lot more delicate than in the complex case. Let’s consider them for the smallest cyclic groups (the ‘isos’ below are only approximations!)

$\mathbb{Z} C_2 = \frac{\mathbb{Z}[x]}{(x^2-1)} = \frac{\mathbb{Z}[x]}{(x-1)} \oplus \frac{\mathbb{Z}[x]}{(x+1)} = \mathbb{Z} \oplus \mathbb{Z} $

$\mathbb{Z} C_3 = \frac{\mathbb{Z}[x]}{(x^3-1)} = \frac{\mathbb{Z}[x]}{(x-1)} \oplus \frac{\mathbb{Z}[x]}{(x^2+x+1)} = \mathbb{Z} \oplus \mathbb{Z}[\rho] $

$\mathbb{Z} C_4 = \frac{\mathbb{Z}[x]}{(x^4-1)} = \frac{\mathbb{Z}[x]}{(x-1)} \oplus \frac{\mathbb{Z}[x]}{(x+1)} \oplus \frac{\mathbb{Z}[x]}{(x^2+1)} = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}[i] $

For a $\mathbb{Z} $-algebra S we can define its mini-functor to be the functor

$\mathbf{mini}(S)~:~\mathbf{abelian} \rightarrow \mathbf{sets} $

which assigns to an Abelian group A the set of all $\mathbb{Z} $-algebra morphisms $S \rightarrow \mathbb{Z} A $. For example, for the algebra $\mathbb{Z}[x,x^{-1}] $ we have that

$\mathbf{mini}(\mathbb{Z} [x,x^{-1}]~(A) = (\mathbb{Z} A)^* $

the set of all invertible elements in the integral group-algebra. To study these sets one has to study the units of cyclotomic integers. From the above decompositions it is easy to verify that for the first few cyclic groups, the corresponding sets are $\pm C_2, \pm C_3 $ and $\pm C_4 $. However, in general this set doesn’t have to be finite. It is a well-known result that the group of units of an integral group-ring of a finite Abelian group is of the form

$(\mathbb{Z} A)^* = \pm A \times \mathbb{Z}^{\oplus r} $

where $r = \frac{1}{2}(o(A) + 1 + n_2 -2c) $ where $o(A) $ is the number of elements of A, $n_2 $ is the number of elements of order 2 and c is the number of cyclic subgroups of A. So, these sets can still be infinite but at least they are a lot more manageable, explaining the mini-terminology.

Now, we would love to go one step deeper and define nano-functors by the same procedure, this time using finitely generated algebras over $\mathbb{F}_1 $, the field with one element. But as we do not really know what we might mean by this, we simply define a nano-functor to be a subfunctor of a mini-functor, that is, a nano-functor N has an associated mini-functor $\mathbf{mini}(S) $ such that for all finite Abelian groups A we have that $N(A) \subset \mathbf{mini}(S)(A) $.

For example, the forgetful functor at the beginning, which we pompously denoted $\underline{\mathbb{G}}_m $ is a nano-functor as it is a subfunctor of the mini-functor $\mathbf{mini}(\mathbb{Z}[x,x^{-1}]) $.

Now we are allmost done : an affine $\mathbb{F}_1 $-scheme in the sense of Connes and Consani is a pair consisting of a nano-functor N and a maxi-functor $\mathbf{maxi}(R) $ such that two rather strong conditions are satisfied :

  • there is an evaluation ‘map’ of functors $e~:~N \rightarrow \mathbf{maxi}(R) $
  • this pair determines uniquely a ‘minimal’ mini-functor $\mathbf{mini}(S) $ of which N is a subfunctor

of course we still have to turn this into proper definitions but that will have to await another post. For now, suffice it to say that the pair $~(\underline{\mathbb{G}}_m,\mathbf{maxi}(\mathbb{C}[x,x^{-1}])) $ is a $\mathbb{F}_1 $-scheme with corresponding uniquely determined mini-functor $\mathbf{mini}(\mathbb{Z}[x,x^{-1}]) $, called the multiplicative group scheme.

Continued here

Leave a Comment