Skip to content →

Tag: geometry

Alain Connes on everything

A few
days ago, Ars Mathematica wrote :

Alain Connes and Mathilde Marcolli have posted a
new survey paper on Arxiv A walk in the
noncommutative garden
. There are many contenders for the title of
noncommutative geometry, but Connes’ flavor is the most
successful.

Be that as it may, do
not print this 106 page long paper! Browse through it
if you have to, be dazzled by it if you are so inclined, but I doubt it
is the eye-opener you were looking for if you gave up on reading
Connes’ book Noncommutative
Geometry
…. Besides, there is much better
_Tehran-material_ on Connes to be found on the web : An interview
with Alain Connes
, still 45 pages long but by all means : print it
out, read it in full and enjoy! Perhaps it may contain a lesson or two
for you. To wet your appetite a few quotes

It is
important that different approaches be developed and that one
doesn’t try to merge them too fast. For instance in noncommutative
geometry my approach is not the only one, there are other approaches
and it’s quite important that for these approaches there is no
social pressure to be the same so that they can develop
independently. It’s too early to judge the situation for instance
in quantum gravity. The only thing I resent in string theory is that
they put in the mind of people that it is the only theory that can
give the answer or they are very close to the answer. That I resent.
For people who have enough background it is fine since they know all
the problems that block the road like the cosmological constant, the
supersymmetry breaking, etc etc…but if you take people who are
beginners in physics programs and brainwash them from the very start
it is really not fair. Young physicists should be completely free,
but it is very hard with the actual system.

And here for some (moderate) Michael Douglas bashing :

Physicists tend to shift often and work on the
last fad. I cannot complain because at some point around 98 that fad was
NCG after my paper with Douglas and Schwarz. But after a while when
I saw Michael Douglas and asked him if he had thought more about
these problems the answer was no because it was no longer the last
fad and he wanted to work on something else. In mathematics one
sometimes works for several years on a problem but these young
physicists have a very different type of working habit. The unit of
time in mathematics is about 10 years. A paper in mathematics which is
10 years old is still a recent paper. In physics it is 3 months. So
I find it very difficult to cope with constant
zapping.

To the suggestion that he is the
prophet (remember, it is a Tehran-interview) of noncommutative geometry
he replies

It is flattering but I don’t think
it is a good thing. In fact we are all human beings and it is a
wrong idea to put a blind trust in a single person and believe in
that person whatever happens. To give you an example I can tell you
a story that happened to me. I went to Chicago in 1996, and gave a
talk in the physics department. A well known physicist was there and
he left the room before the talk was over. I didn’t meet this
physicist for two years and then, two years later, I gave the same
talk in the Dirac Forum in Rutherford laboratory near Oxford. This
time the same physicist was attending, looking very open and convinced
and when he gave his talk later he mentioned my talk quite
positively. This was quite amazing because it was the same talk and
I had not forgotten his previous reaction. So on the way back to
Oxford, I was sitting next to him in the bus, and asked him openly
how can it be that you attended the same talk in Chicago and you
left before the end and now you really liked it. The guy was not a
beginner and was in his forties, his answer was “Witten was seen
reading your book in the library in Princeton”! So I don’t want
to play that role of a prophet preventing people from thinking on
their own and ruling the sub ject, ranking people and all that. I
care a lot for ideas and about NCG because I love it as a branch of
mathematics but I don’t want my name to be associated with it as a
prophet.

and as if that was not convincing
enough, he continues

Well, the point is that what
matters are the ideas and they belong to nobody. To declare that
some persons are on top of the ladder and can judge and rank the
others is just nonsense mostly produced by the sociology (in fact by the
system of recommendation letters). I don’t want that to be true in
NCG. I want freedom, I welcome heretics.

But please, read it all for yourself and draw your own conclusions.

One Comment

micro-sudoku

One
cannot fight fashion… Following ones own research interest is a
pretty frustrating activity. Not only does it take forever to get a
paper refereed but then you have to motivate why you do these things
and what their relevance is to other subjects. On the other hand,
following fashion seems to be motivation enough for most…
Sadly, the same begins to apply to teaching. In my Geometry 101 course I
have to give an introduction to graphs&groups&geometry. So,
rather than giving a standard intro to graph-theory I thought it would
be more fun to solve all sorts of classical graph-problems (Konigsberger
bridges
, Instant
Insanity
, Gas-
water-electricity
, and so on…) Sure, these first year
students are (still) very polite, but I get the distinct feeling that
they think “Why on earth should we be interested in these old
problems when there are much more exciting subjects such as fractals,
cryptography or string theory?” Besides, already on the first day
they made it pretty clear that the only puzzle they are interested in is
Sudoku.
Next week I’ll have to introduce groups and I was planning to do
this via the Rubik
cube
but I’ve learned my lesson. Instead, I’ll introduce
symmetry by considering micro-
sudoku
that is the baby 4×4 version of the regular 9×9
Sudoku. The first thing I’ll do is work out the number of
different solutions to micro-Sudoku. Remember that in regular Sudoku
this number is 6,670,903,752,021,072,936,960 (by a computer search
performed by Bertram
Felgenhauer
). For micro-Sudoku there is an interesting
(but ratther confused) thread on the
Sudoku forum
and after a lot of guess-work the consensus seems to be
that there are precisely 288 distinct solutions to micro-Sudoku. In
fact, this is easy to see and uses symmetry. The symmetric group $S_4$
acts on the set of all solutions by permuting the four numbers, so one
may assume that a solution is in the form where the upper-left 2×2
block is 12 and 34 and the lower right 2×2 block consists of the
rows ab and cd. One quickly sees that either this leeds to a
unique solution or so does the situation with the roles of b and c
changed. So in all there are $4! \\times \\frac{1}{2} 4!=24 \\times 12 =
288$ distinct solutions. Next, one can ask for the number of
_essentially_ different solutions. That is, consider the action
of the _Sudoku-symmetry group_ (including things such as
permuting rows and columns, reflections and rotations of the grid). In
normal 9×9 Sudoku this number was computed by Ed Russell
and Frazer Jarvis
to be 5,472,730,538 (again,heavily using the
computer). For micro-Sudoku the answer is that there are just 2
essentially different solutions and there is a short nice argument,
given by ‘Nick70′ at the end of the above mentioned thread. Looking a bit closer one verifies easily that the
two Sudoku-group orbits have different sizes. One contains 96 solutions,
the other 192 solutions. It will be interesting to find out how these
calculations will be received in class next week…

One Comment

work in progress

The third volume in the NeverEndingBooks-series will be written by Geert Van de Weyer and will
be about (double) Poisson structures in the noncommutative world. Volume
4&5 are becoming clearer every day and if you think you have a
project fitting in this series, you can always email to
[info@neverenedingbooks.org][3].

As for the NeverEndingBooks-URL, I will
probably close this blog by the end of the month (at its first
birthday). The main reason is that I found out that it takes several
people to maintain a mathematical blog for some time. So, if you want to
co-author a group-blog on noncommutative algebra and/or noncommutative
geometry, please [email me][5] (or even better, leave a comment here so
that other people may be willing to join in too) and if there is enough
critical mass to go ahead with the plan I will be happy to set up a
group-blog at noncommutative.org.

At
this URL I’ll probably put a frontpage for the book-series we started
and which you can buy at all times via lulu.com/neverendingbooks. It will contain errata- and suggestions-pages for each volume and
details about forthcoming books, links etc… Btw. it would probably
be a good commercial move to delete TheLibrary links sooner, now that
even String Theorists are driven to this site via
Lazariou’s paper On
the non-commutative geometry of topological D-branes

As my
main objective next year will be to write courses (from first year down
to post-doc level) I will set up (again) a Moodle site (mainly in English,
although UA-students will be free to add to it in Dutch). News about it
will be posted eventually at my regular, but forgotten
homepage
and perhaps here.

Once again, if you are interested
to contribute at unregular intervals to a noncommutative group-blog,
please leave a comment!

[3]: mailto: info@neverendingbooks.org
[5]: mailto: lieven.lebruyn@ua.ac.be

Leave a Comment