Skip to content →

Tag: geometry

master class 2007

Next
week our master programme on noncommutative geometry
will start. Here is the list of all international mini-courses (8 hours
each) and firm or tentative dates. For the latest update, it is always
best to check with the Arts seminar
website
.

  • Hans-Juergen Schneider (Munich) “Hopf Galois extensions and
    quotient theory of Hopf algebras”. February 20-23 each day from
    10h30-12h30.

  • Markus Reineke
    (Wuppertal) “Representations of quivers”. February 27-28, March 1-2
    each day from 10h30-12h30.


  • Arthur Ruuge
    (Moscow) “Semiclassical approximation of quantum
    mechanics”. March 6-9 each day from 10h30-12h30.
  • Rupert Yu
    (Poitiers) in March or April.
  • Isar Stubbe (Antwerp) in April.
  • Fred Van Oystayen (Antwerp) in April.
  • Raf
    Bocklandt (Antwerp) in April or May.
  • Goro Kato (Los Angeles)
    in May.
  • Florin Panaite (Bucharest) in May.
  • Pjotr
    Hajac (Warsaw) in June.

Apart from these mini-courses
there will be four regular courses (approx. 30hrs each) during the whole
semester.

  • Raf Bocklandt “Knot theory”.
  • Lieven Le Bruyn “Noncommutative geometry”.
  • Geert Van
    de Weyer “Quantum groups”.
  • Fred Van Oysyaeyen
    “Noncommutative algebra”.

<

p>Dates and places of all
lectures will be made available through the Arts seminar
site
.

Leave a Comment

way too ambitious

Student-evaluation sneak preview : I am friendly and
extremely helpful but have a somewhat chaotic teaching style and am way
too ambitious as regards content… I was about to deny vehemently
all assertions (except for the chaotic bit) but may have to change my
mind after reading this report on
Mark Rowan’s book ‘Symmetry and the monster’ (see also
my post
)

Oxford University Press considers this book
“a must-read for all fans of popular science”. In his blog,
Lieven le Bruyn, professor of algebra and geometry at the University of
Antwerp, suggests that “Mark Ronan has written a beautiful book
intended for the general public”. However, he goes on to say:
“this year I’ve tried to explain to an exceptionally
good second year of undergraduates, but failed miserably Perhaps
I’ll give it another (downkeyed) try using Symmetry and the
Monster as reading material”.

As an erstwhile
mathematician, I found the book more suited to exceptional maths
undergraduates than to the general public and would strongly encourage
authors and/or publishers to pass such works before a few fans of
popular science before going to press.

Peggie Rimmer,
Satigny.

Well, this ‘exceptionally good
year’ has moved on and I had to teach a course ‘Elementary
Algebraic Geometry’ to them last semester. I had the crazy idea to
approach this in a historical perspective : first I did the
Hilbert-Noether period (translating geometry to ideal theory of
polynomial rings), then the Krull-Weil-Zariski period (defining
everything in terms of coordinate rings) to finish off with the
Serre-Grothendieck period (introducing scheme theory)… Not
surprisingly, I lost everyone after 1920. Once again there were
complaints that I was expecting way too much from them etc. etc. and I
was about to apologize and promise I’ll stick to a doable course
next year (something along the lines of Miles Reid’s
‘Undergraduate Algebraic Geometry’) when one of the students
(admittedly, probably the best of this ‘exceptional year’)
decided to do all exercises of the first two chapters of Fulton’s
‘Algebraic Curves’ to become more accustomed to the subject.
Afterwards he told me “You know, I wouldn’t change the
course too much, now that I did all these exercises I realize that your
course notes are not that bad after all…”. Yeah, thanks!

Leave a Comment

2006 paper nominees

Here are
my nominees for the 2006 paper of the year award in mathematics &
mathematical physics : in math.RA : math.RA/0606241
: Notes on A-infinity
algebras, A-infinity categories and non-commutative geometry. I
by

Maxim Kontsevich
and
Yan Soibelman
. Here is the abstract :

We develop
geometric approach to A-infinity algebras and A-infinity categories
based on the notion of formal scheme in the category of graded vector
spaces. Geometric approach clarifies several questions, e.g. the notion
of homological unit or A-infinity structure on A-infinity functors. We
discuss Hochschild complexes of A-infinity algebras from geometric point
of view. The paper contains homological versions of the notions of
properness and smoothness of projective varieties as well as the
non-commutative version of Hodge-to-de Rham degeneration conjecture. We
also discuss a generalization of Deligne’s conjecture which includes
both Hochschild chains and cochains. We conclude the paper with the
description of an action of the PROP of singular chains of the
topological PROP of 2-dimensional surfaces on the Hochschild chain
complex of an A-infinity algebra with the scalar product (this action is
more or less equivalent to the structure of 2-dimensional Topological
Field Theory associated with an “abstract” Calabi-Yau
manifold).

why ? : Because this paper
probably gives the correct geometric object associated to a
non-commutative algebra (a huge coalgebra) and consequently the right
definition of a map between noncommutative affine schemes. In a previous post (and its predecessors) I’ve
tried to explain how this links up with my own interpretation and since
then I’ve thought more about this, but that will have to wait for
another time. in hep-th : hep-th/0611082 : Children’s Drawings From
Seiberg-Witten Curves
by Sujay K. Ashok, Freddy Cachazo, Eleonora
Dell’Aquila. Here is the abstract :

We consider N=2
supersymmetric gauge theories perturbed by tree level superpotential
terms near isolated singular points in the Coulomb moduli space. We
identify the Seiberg-Witten curve at these points with polynomial
equations used to construct what Grothendieck called “dessins
d’enfants” or “children’s drawings” on the Riemann
sphere. From a mathematical point of view, the dessins are important
because the absolute Galois group Gal(\bar{Q}/Q) acts faithfully on
them. We argue that the relation between the dessins and Seiberg-Witten
theory is useful because gauge theory criteria used to distinguish
branches of N=1 vacua can lead to mathematical invariants that help to
distinguish dessins belonging to different Galois orbits. For instance,
we show that the confinement index defined in hep-th/0301006 is a Galois
invariant. We further make some conjectures on the relation between
Grothendieck’s programme of classifying dessins into Galois orbits and
the physics problem of classifying phases of N=1 gauge theories.

why ? : Because this paper gives the
best introduction I’ve seen to Grothendieck’s dessins d’enfants
(slightly overdoing it by giving a crash course on elementary Galois
theory in appendix A) and kept me thinking about dessins and their
Galois invariants ever since (again, I’ll come back to this later).

Leave a Comment