Skip to content →

Tag: geometry

Quiver-superpotentials

It’s been a while, so let’s include a recap : a (transitive) permutation representation of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ is determined by the conjugacy class of a cofinite subgroup $\Lambda \subset \Gamma $, or equivalently, to a dessin d’enfant. We have introduced a quiver (aka an oriented graph) which comes from a triangulation of the compactification of $\mathbb{H} / \Lambda $ where $\mathbb{H} $ is the hyperbolic upper half-plane. This quiver is independent of the chosen embedding of the dessin in the Dedeking tessellation. (For more on these terms and constructions, please consult the series Modular subgroups and Dessins d’enfants).

Why are quivers useful? To start, any quiver $Q $ defines a noncommutative algebra, the path algebra $\mathbb{C} Q $, which has as a $\mathbb{C} $-basis all oriented paths in the quiver and multiplication is induced by concatenation of paths (when possible, or zero otherwise). Usually, it is quite hard to make actual computations in noncommutative algebras, but in the case of path algebras you can just see what happens.

Moreover, we can also see the finite dimensional representations of this algebra $\mathbb{C} Q $. Up to isomorphism they are all of the following form : at each vertex $v_i $ of the quiver one places a finite dimensional vectorspace $\mathbb{C}^{d_i} $ and any arrow in the quiver
[tex]\xymatrix{\vtx{v_i} \ar[r]^a & \vtx{v_j}}[/tex] determines a linear map between these vertex spaces, that is, to $a $ corresponds a matrix in $M_{d_j \times d_i}(\mathbb{C}) $. These matrices determine how the paths of length one act on the representation, longer paths act via multiplcation of matrices along the oriented path.

A necklace in the quiver is a closed oriented path in the quiver up to cyclic permutation of the arrows making up the cycle. That is, we are free to choose the start (and end) point of the cycle. For example, in the one-cycle quiver

[tex]\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar[ld]^b \\ & \vtx{} \ar[lu]^c &}[/tex]

the basic necklace can be represented as $abc $ or $bca $ or $cab $. How does a necklace act on a representation? Well, the matrix-multiplication of the matrices corresponding to the arrows gives a square matrix in each of the vertices in the cycle. Though the dimensions of this matrix may vary from vertex to vertex, what does not change (and hence is a property of the necklace rather than of the particular choice of cycle) is the trace of this matrix. That is, necklaces give complex-valued functions on representations of $\mathbb{C} Q $ and by a result of Artin and Procesi there are enough of them to distinguish isoclasses of (semi)simple representations! That is, linear combinations a necklaces (aka super-potentials) can be viewed, after taking traces, as complex-valued functions on all representations (similar to character-functions).

In physics, one views these functions as potentials and it then interested in the points (representations) where this function is extremal (minimal) : the vacua. Clearly, this does not make much sense in the complex-case but is relevant when we look at the real-case (where we look at skew-Hermitian matrices rather than all matrices). A motivating example (the Yang-Mills potential) is given in Example 2.3.2 of Victor Ginzburg’s paper Calabi-Yau algebras.

Let $\Phi $ be a super-potential (again, a linear combination of necklaces) then our commutative intuition tells us that extrema correspond to zeroes of all partial differentials $\frac{\partial \Phi}{\partial a} $ where $a $ runs over all coordinates (in our case, the arrows of the quiver). One can make sense of differentials of necklaces (and super-potentials) as follows : the partial differential with respect to an arrow $a $ occurring in a term of $\Phi $ is defined to be the path in the quiver one obtains by removing all 1-occurrences of $a $ in the necklaces (defining $\Phi $) and rearranging terms to get a maximal broken necklace (using the cyclic property of necklaces). An example, for the cyclic quiver above let us take as super-potential $abcabc $ (2 cyclic turns), then for example

$\frac{\partial \Phi}{\partial b} = cabca+cabca = 2 cabca $

(the first term corresponds to the first occurrence of $b $, the second to the second). Okay, but then the vacua-representations will be the representations of the quotient-algebra (which I like to call the vacualgebra)

$\mathcal{U}(Q,\Phi) = \frac{\mathbb{C} Q}{(\partial \Phi/\partial a, \forall a)} $

which in ‘physical relevant settings’ (whatever that means…) turn out to be Calabi-Yau algebras.

But, let us return to the case of subgroups of the modular group and their quivers. Do we have a natural super-potential in this case? Well yes, the quiver encoded a triangulation of the compactification of $\mathbb{H}/\Lambda $ and if we choose an orientation it turns out that all ‘black’ triangles (with respect to the Dedekind tessellation) have their arrow-sides defining a necklace, whereas for the ‘white’ triangles the reverse orientation makes the arrow-sides into a necklace. Hence, it makes sense to look at the cubic superpotential $\Phi $ being the sum over all triangle-sides-necklaces with a +1-coefficient for the black triangles and a -1-coefficient for the white ones. Let’s consider an index three example from a previous post


[tex]\xymatrix{& & \rho \ar[lld]_d \ar[ld]^f \ar[rd]^e & \\
i \ar[rrd]_a & i+1 \ar[rd]^b & & \omega \ar[ld]^c \\
& & 0 \ar[uu]^h \ar@/^/[uu]^g \ar@/_/[uu]_i &}[/tex]

In this case the super-potential coming from the triangulation is

$\Phi = -aid+agd-cge+che-bhf+bif $

and therefore we have a noncommutative algebra $\mathcal{U}(Q,\Phi) $ associated to this index 3 subgroup. Contrary to what I believed at the start of this series, the algebras one obtains in this way from dessins d’enfants are far from being Calabi-Yau (in whatever definition). For example, using a GAP-program written by Raf Bocklandt Ive checked that the growth rate of the above algebra is similar to that of $\mathbb{C}[x] $, so in this case $\mathcal{U}(Q,\Phi) $ can be viewed as a noncommutative curve (with singularities).

However, this is not the case for all such algebras. For example, the vacualgebra associated to the second index three subgroup (whose fundamental domain and quiver were depicted at the end of this post) has growth rate similar to that of $\mathbb{C} \langle x,y \rangle $…

I have an outlandish conjecture about the growth-behavior of all algebras $\mathcal{U}(Q,\Phi) $ coming from dessins d’enfants : the algebra sees what the monodromy representation of the dessin sees of the modular group (or of the third braid group).
I can make this more precise, but perhaps it is wiser to calculate one or two further examples…

One Comment

thanks for linking

I’ve re-installed the Google analytics plugin on december 22nd, so it is harvesting data for three weeks only. Still, it is an interesting tool to gain insight in the social networking aspect of math-blogging, something I’m still very bad at…

Below the list of all blogs referring at least 10 times over this last three weeks. In brackets are the number of referrals and included are the average time Avg. they spend on this site, as well as the bounce back rate BB. It gives me the opportunity to link back to some of their posts, as a small token of gratitude. I may repeat this in the future, so please keep on linking…

Not Even Wrong (69) : Avg (1.05 min) BB (52.94%)

The most recent post of Peter is an update on the plagiarism scandal on the arXiv.

The n-category cafe (63) : Avg (2.13 min) BB (50%)

The one series I followed at the cafe lately was the Geometric Representation Theory course run by John Baez and James Dolan. They provide downloadable movies as well as notes.

Richard Borcherd’s blog (47) : Avg (1.53 min) BB (53.19%)

It is great to see that Borcherds has taken up blogging again, with a post on the uselessness of set theory.

The Arcadian functor (32) : Avg (3.45 min) BB (34.38 %)

It is clear from the low bounce-back rate and the high average time spend on this site, that Kea’s readers and mine have common interests. Often I feel that Kea and I are talking about the same topics, but that our language is so different, that it is difficult for me to spot the precise connection. I definitely should start (for myself) a translation-project of her M-theory posts.

RupertGee’s iBlog (23) : Avg (6.48 min) BB (34.7 %)

Surprisingly, and contrasting to my previous rant iTouch-people (or at least those coming here from Rupert Gee’s blog) sure take time to read the posts and look for more.

Ars Mathematica (22) : Avg (0:01 min) BB (77,2 %)

Well, the average time and bounce back rate say it all : people coming here from Ars Mathematica are not interested in longer posts…

iTouch Fans Forum (14) : Avg (2:07 min) BB (42.86 %)

Again, better statistics than I would have expected.

Vivatsgasse 7 (13) : Avg (1:51 min) BB (38.46 %)

I hope these guys haven’t completely given up on blogging as it is one of my favourites.

Sixth form mathematics (12) : Avg (1:40 min) BB (25 %)

My few old posts on LaTeXrender still draw referrals…

Strategic Boards (12) : Avg (0:01 min) BB (91.67 %)

People in strategic board games are not really in my game-posts it seems…

The Everything Seminar (11) : Avg (2:04 min) BB (72.73 %)

Greg Muller has been posting a couple of nice posts on chord diagrams, starting here.

Noncommutative Geometry (11) : Avg (3:36 min) BB (27.27 %)

Well, we are interested in the same thing viewed from different angles, so good average times and a low bounce back rate. Maybe, I should make another attempt to have cross-interaction between the two blogs.

7 Comments

Doodles worth millions (or not)

Via PD1, who told me the story on her 23rd birthday, yesterday.

The story starts with Alex Matter, whose father, Herbert, and mother, Mercedes, were artists and friends of Jackson Pollock, famous for his drip-paintings. He discovered a group of small drip paintings in a storage locker in Wainscott, N.Y. which he believed to be authentic Pollocks, and if he is proved right, they would be worth millions of dollars.

Usually such discoveries lead to heated debates among art-critics and Pollock-experts whether one finds proof to authenticate the paintings. Not this time. In steps a mathematician who claims that he can authenticate a Pollock drip-painting by calculating its fractal dimension (??!!)… and claims that these drippings cannot be Pollocks because their dimension is too small… LOL!

This madmatician is Richard Taylor from the University of Oregon in Corvallis.

Taylor took a digital image of a Pollock painting into his lab, broke the image into its separate colors, and computed the fractal dimension of the lines in each color. Each time, he got a number between 1 and 2, confirming his notion that Pollock’s paintings are fractal. “Rather than mimicking nature,” Taylor says, Pollock “adopted its language of fractals to build his own patterns.”

In 1999, Taylor reported that the fractal dimension of Pollock’s paintings increased during his life. His early drip paintings have a loose web of lines, mostly at the same scale. Because these paintings show no fractal qualities, their dimension is near 1. But Pollock’s later paintings have a dense network of overlapping lines, ranging from large, bold strokes to delicate threads, Taylor calculated a fractal dimension of 1.72 for these works.

His paper on this “Authenticating Pollock Paintings Using Fractal Geometry” can be found here. Luckily, the story doesn’t end here. In steps a graduate student in astrophysics at Case Western, Katherine Jones-Smith who had to give a seminar talk to her fellow students.

“I was sort of bored with particle astrophysics,” Jones-Smith says, so she looked around for something different. She came across an account of Taylor’s work, and “it sounded really cool,” she recalls.

“The obvious check to me was to make sure that not any old scribble would appear to be fractal,” she says. “So, I made some scribbles.” Much to her surprise, when she computed the fractal dimension of her scribbles, they turned out to be greater than 1.

Recently, she arXived her findings in the paper Drip Paintings and Fractal Analysis from which the above doodles are taken, called appropriately “Gross pebbles” and “Mixed stars”.

When Katherine Jones-Smith made some doodles on a page “”pretty ugly” ones, she says”she found that they shared the qualities of a Pollock, according to an analysis that follows Taylor’s approach. “Either Taylor is wrong, or Kate’s drawings are worth $40 million,” says Jones-Smith’s collaborator Harsh Mathur. “We’d be happy either way.

More on this hilarious story can be found in this science news article, this New-York times story or the Pollocks-bollocks blog entry over at biophemera.

One Comment