Skip to content →

Tag: Galois

a noncommutative Grothendieck topology

We have seen that a non-commutative $l$-point is an
algebra$P=S_1 \\oplus … \\oplus S_k$with each $S_i$ a simple
finite dimensional $l$-algebra with center $L_i$ which is a separable
extension of $l$. The centers of these non-commutative points (that is
the algebras $L_1 \\oplus … \\oplus L_k$) are the open sets of a
Grothendieck-topology on
$l$. To define it properly, let $L$ be the separable closure of $l$
and let $G=Gal(L/l)$ be the so called absolute
Galois group. Consider the
category with objects the finite $G$-sets, that is : finite
sets with an action of $G$, and with morphisms the $G$-equivariant
set-maps, that is: maps respecting the group action. For each object
$V$ we call a finite collection of morphisms $Vi \\mapsto V$ a
cover of $V$ if the images of the finite number of $Vi$ is all
of $V$. Let $Cov$ be the set of all covers of finite $G$-sets, then
this is an example of a Grothendieck-topology as it satisfies
the following three conditions :

(GT1) : If
$W \\mapsto V$ is an isomorphism of $G$-sets, then $\\{ W \\mapsto
V \\}$ is an element of $Cov$.

(GT2) : If $\\{ Vi \\mapsto
V \\}$ is in $Cov$ and if for every i also $\\{ Wij \\mapsto Vi \\}$
is in $Cov$, then the collection $\\{ Wij \\mapsto V \\}$ is in
$Cov$.

(GT3) : If $\\{ fi : Vi \\mapsto V \\}$ is in $Cov$
and $g : W \\mapsto V$ is a $G$-morphism, then the fibered
products
$Vi x_V W = \\{ (vi,w) in Vi x W : fi(vi)=g(w) \\}$is
again a $G$-set and the collection $\\{ Vi x_V W \\mapsto V \\}$
is in $Cov$.

Now, finite $G$-sets are just
commutative separable $l$-algebras (that is,
commutative $l$-points). To see this, decompose a
finite $G$-set into its finitely many orbits $Oj$ and let $Hj$ be the
stabilizer subgroup of an element in $Oj$, then $Hj$ is of finite
index in $G$ and the fixed field $L^Hj$ is a finite dimensional
separable field extension of $l$. So, a finite $G$-set $V$
corresponds uniquely to a separable $l$-algebra $S(V)$. Moreover, a
finite cover $\\{ W \\mapsto V \\}$ is the same thing as saying
that $S(W)$ is a commutative separable $S(V)$-algebra. Thus,
the Grothendieck topology of finite $G$-sets and their covers
is anti-equivalent to the category of commutative separable
$l$-algebras and their separable commutative extensions.

This raises the natural question : what happens if we extend the
category to all separable $l$-algebras, that is, the category of
non-commutative $l$-points, do we still obtain something like a
Grothendieck topology? Or do we get something like a
non-commutative Grothendieck topology as defined by Fred Van
Oystaeyen (essentially replacing the axiom (GT 3) by a left and right
version). And if so, what are the non-commutative covers?
Clearly, if $S(V)$ is a commutative separable $l$-algebras, we expect
these non-commutative covers to be the set of all separable
$S(V)$-algebras, but what are they if $S$ is itself non-commutative,
that is, if $S$ is a non-commutative $l$-point?

Leave a Comment

Galois and the Brauer group

Last time we have seen that in order to classify all
non-commutative $l$-points one needs to control the finite
dimensional simple algebras having as their center a finite
dimensional field-extension of $l$. We have seen that the equivalence
classes of simple algebras with the same center $L$ form an Abelian
group, the
Brauer group. The calculation of Brauer groups
is best done using
Galois-cohomology. As an aside :
Evariste Galois was one of the more tragic figures in the history of
mathematics, he died at the age of 20 as a result of a duel. There is
a whole site the Evariste Galois archive dedicated to his
work.

But let us return to a simple algebra $T$ over the
field $L$ which we have seen to be of the form $M(k,S)$, full
matrices over a division algebra $S$. We know that the dimension of
$S$ over $L$ is a square, say $n^2$, and it can be shown that all
maximal commutative subfields of $S$ have dimension n over $L$.
In this way one can view a simple algebra as a bag containing all
sorts of degree n extensions of its center. All these maximal
subfields are also splitting fields for $S$, meaning that
if you tensor $S$ with one of them, say $M$, one obtains full nxn
matrices $M(n,M)$. Among this collection there is at least one
separable field but for a long time it was an open question
whether the collection of all maximal commutative subfields also
contains a Galois-extension of $L$. If this is the case, then
one could describe the division algebra $S$ as a crossed
product
. It was known for some time that there is always a simple
algebra $S’$ equivalent to $S$ which is a crossed product (usually
corresponding to a different number n’), that is, all elements of
the Brauer group can be represented by crossed products. It came as a
surprise when S.A. Amitsur in 1972 came up with examples of
non-crossed product division algebras, that is, division algebras $D$
such that none of its maximal commutative subfields is a Galois
extension of the center. His examples were generic
division algebras
$D(n)$. To define $D(n)$ take two generic
nxn matrices
, that is, nxn matrices A and B such that all its
entries are algebraically independent over $L$ and consider the
$L$-subalgebra generated by A and B in the full nxn matrixring over the
field $F$ generated by all entries of A and B. Somewhat surprisingly,
one can show that this subalgebra is a domain and inverting all its
central elements (which, again, is somewhat of a surprise that
there are lots of them apart from elements of $L$, the so called
central polynomials) one obtains the division algebra $D(n)$ with
center $F(n)$ which has trancendence degree n^2 1 over $L$. By the
way, it is still unknown (apart from some low n cases) whether $F(n)$
is purely trancendental over $L$. Now, utilising the generic
nature of $D(n)$, Amitsur was able to prove that when $L=Q$, the
field of rational numbers, $D(n)$ cannot be a crossed product unless
$n=2^s p_1…p_k$ with the p_i prime numbers and s at most 2. So, for
example $D(8)$ is not a crossed product.

One can then
ask whether any division algebra $S$, of dimension n^2 over $L$, is a
crossed whenever n is squarefree. Even teh simplest case, when n is a
prime number is not known unless p=2 or 3. This shows how little we do
know about finite dimensional division algebras : nobody knows
whether a division algebra of dimension 25 contains a maximal
cyclic subfield (the main problem in deciding this type of
problems is that we know so few methods to construct division
algebras; either they are constructed quite explicitly as a crossed
product or otherwise they are constructed by some generic construction
but then it is very hard to make explicit calculations with
them).

Leave a Comment

connected component coalgebra


Never thought that I would ever consider Galois descent of semigroup
coalgebras
but in preparing for my talks for the master-class it
came about naturally. Let A be a formally smooth algebra
(sometimes called a quasi-free algebra, I prefer the terminology
noncommutative curve) over an arbitrary base-field k. What, if
anything, can be said about the connected components of the affine
k-schemes rep(n,A) of n-dimensional representations
of A? If k is algebraically closed, then one can put a
commutative semigroup structure on the connected components induced by
the sum map

rep(n,A) x rep(m,A) -> rep(n + m,A)   :  (M,N)
-> M + N

as introduced and studied by Kent
Morrison
a long while ago. So what would be a natural substitute for
this if k is arbitrary? Well, define pi(n) to be the
maximal unramified sub k-algebra of k(rep(n,A)),
the coordinate ring of rep(n,A), then corresponding to the
sum-map above is a map

pi(n + m) -> pi(n) \\otimes
pi(m)

and these maps define on the graded
space

Pi(A) = pi(0) + pi(1) + pi(2) + ...

the
structure of a graded commutative k-coalgebra with
comultiplication

pi(n) -> sum(a + b=n) pi(a) \\otimes
pi(b)

The relevance of Pi(A) is that if we consider it
over the algebraic closure K of k we get the semigroup
coalgebra

K G  with  g -> sum(h.h\' = g) h \\otimes
h\'

where G is Morrison\’s connected component
semigroup. That is, Pi(A) is a k-form of this semigroup
coalgebra. Perhaps it is a good project for one of the students to work
this out in detail (and correct possible mistakes I made) and give some
concrete examples for formally smooth algebras A. If you know of
a reference on this, please let me know.

Leave a Comment