Skip to content →

Tag: differential

pdfsync

I
expect to be writing a lot in the coming months. To start, after having
given the course once I noticed that I included a lot of new material
during the talks (mainly concerning the component coalgebra and some
extras on non-commutative differential forms and symplectic forms) so
I\’d better update the Granada notes
soon as they will also be the basis of the master course I\’ll start
next week. Besides, I have to revise the Qurves and
Quivers
-paper and to start drafting the new bachelor courses for
next academic year (a course on representation theory of finite groups,
another on Riemann surfaces and an upgrade of the geometry-101 course).

So, I\’d better try to optimize my LaTeX-workflow and learn
something about the pdfsync package.
Here is what it is supposed to do :

pdfsync is
an acronym for synchronization between a pdf file and the TeX or so
source file used in the production process. As TeX system is not a
WYSIWYG editor, you cannot modify the output directly, instead, you must
edit a source file then run the production process. The pdfsync helps
you finding what part of the output corresponds to what line of the
source file, and conversely what line of the source file corresponds to
a location of a given page in the ouput. This feature is achieved with
the help of an auxiliary file: foo.pdfsync corresponding to a foo.pdf.

All you have to do is to put the pdfsync.sty file
in the directory _~/Library/texmf/tex/latex/pdfsync.sty_ and to
include the pdfsync-package in the preamble of the LaTeX-document. Under
my default iTex-front-end TeXShop it
works well to go from a spot in the PDF-file to the corresponding place
in the source-code, but in the other direction it only shows the
appropriate page rather than indicate the precise place with a red dot
as it does in the alternative front-end iTeXMac.

A major
drawback for me is that pdfsync doesn\’t live in harmony with my
favorite package for drawing commutative diagrams diagrams.sty. For example, the 75 pages of the current
version of the Granada notes become blown-up to 96 pages because each
commutative diagram explodes to nearly page size! So I will also have to
translate everything to xymatrix&#
8230;

One Comment

curvatures

[Last
time][1] we saw that the algebra $(\Omega_V~C Q,Circ)$ of relative
differential forms and equipped with the Fedosov product is again the
path algebra of a quiver $\tilde{Q}$ obtained by doubling up the arrows
of $Q$. In our basic example the algebra map $C \tilde{Q} \rightarrow
\Omega_V~C Q$ is clarified by the following picture of $\tilde{Q}$
$\xymatrix{\vtx{} \ar@/^/[rr]^{a=u+du} \ar@/_/[rr]_{b=u-du} & &
\vtx{} \ar@(u,ur)^{x=v+dv} \ar@(d,dr)_{y=v-dv}} $ (which
generalizes in the obvious way to arbitrary quivers). But what about the
other direction $\Omega_V~C Q \rightarrow C \tilde{Q}$ ? There are two
embeddings $i,j : C Q \rightarrow C \tilde{Q}$ defined by $i : (u,v)
\rightarrow (a,x)$ and $j : (u,v) \rightarrow (b,y)$ giving maps
$\forall a \in C Q~:~p(a) = \frac{1}{2}(i(a)+j(a))~\quad~q(a) =
\frac{1}{2}(i(a)-j(a))$ Using these maps, the isomorphism $\Omega_V~C
Q \rightarrow C \tilde{Q}$ is determined by $ a_0 da_1 \ldots da_n
\rightarrow p(a_0)q(a_1) \ldots q(a_n)$ In particular, $p$ gives the
natural embedding (with the ordinary multiplication on differential
forms) $C Q \rightarrow \Omega_V~C Q$ of functions as degree zero
differential forms. However, $p$ is no longer an algebra map for the
Fedosov product on $\Omega_V~C Q$ as $p(ab) = p(a)Circ p(b) + q(a) Circ
q(b)$. In Cuntz-Quillen terminology, $\omega(a,b) = q(a) Circ q(b)$ is
the _curvature_ of the based linear map $p$. I\’d better define
this a bit more formal for any algebra $A$ and then say what is special
for formally smooth algebras (non-commutative manifolds). If $A,B$ are
$V = C \times \ldots \times C$-algebras, then a $V$-linear map $A
\rightarrow^l B$ is said to be a _based linear map_ if $ l | V = id_V$.
The _curvature_ of $l$ measures the obstruction to $l$ being an algebra
map, that is $\forall a,b \in A~:~\omega(a,b) = l(ab)-l(a)l(b)$ and
the curvature is said to be _nilpotent_ if there is an integer $n$ such
that all possible products $\omega(a_1,b_1)\omega(a_2,b_2) \ldots
\omega(a_n,b_n) = 0$ For any algebra $A$ there is a universal algebra
$R(A)$ turning based linear maps into algebra maps. That is, there is a
fixed based linear map $A \rightarrow^p R(A)$ such that for every based
linear map $A \rightarrow^l B$ there is an algebra map $R(A) \rightarrow
B$ making the diagram commute $\xymatrix{A \ar[r]^l \ar[d]^p & B
\\\ R(A) \ar[ru] &} $ In fact, Cuntz and Quillen show that $R(A)
\simeq (\Omega_V^{ev}~A,Circ)$ the algebra of even differential forms
equipped with the Fedosov product and that $p$ is the natural inclusion
of $A$ as degree zero forms (as above). Recall that $A$ is said to be
_formally smooth_ if every $V$-algebra map $A \rightarrow^f B/I$ where
$I$ is a nilpotent ideal, can be lifted to an algebra morphism $A
\rightarrow B$. We can always lift $f$ as a based linear map, say
$\tilde{f}$ and because $I$ is nilpotent, the curvature of $\tilde{f}$
is also nilpotent. To get a _uniform_ way to construct algebra lifts
modulo nilpotent ideals it would therefore suffice for a formally smooth
algebra to have an _algebra map_ $A \rightarrow \hat{R}(A)$ where
$\hat{R}(A)$ is the $\mathfrak{m}$-adic completion of $R(A)$ for the
ideal $\mathfrak{m}$ which is the kernel of the algebra map $R(A)
\rightarrow A$ corresponding to the based linear map $id_A : A
\rightarrow A$. Indeed, there is an algebra map $R(A) \rightarrow B$
determined by $\tilde{f}$ and hence also an algebra map $\hat{R}(A)
\rightarrow B$ and composing this with the (yet to be constructed)
algebra map $A \rightarrow \hat{R}(A)$ this would give the required lift
$A \rightarrow B$. In order to construct the algebra map $A
\rightarrow \hat{R}(A)$ (say in the case of path algebras of quivers) we
will need the Yang-Mills derivation and its associated flow.

[1]: http://www.matrix.ua.ac.be/index.php?p=354

Leave a Comment

differential forms

The
previous post in this sequence was [(co)tangent bundles][1]. Let $A$ be
a $V$-algebra where $V = C \times \ldots \times C$ is the subalgebra
generated by a complete set of orthogonal idempotents in $A$ (in case $A
= C Q$ is a path algebra, $V$ will be the subalgebra generated by the
vertex-idempotents, see the post on [path algebras][2] for more
details). With $\overline{A}$ we denote the bimodule quotient
$\overline{A} = A/V$ Then, we can define the _non-commutative
(relative) differential n-forms_ to be $\Omega^n_V~A = A \otimes_V
\overline{A} \otimes_V \ldots \otimes_V \overline{A}$ with $n$ factors
$\overline{A}$. To get the connection with usual differential forms let
us denote the tensor $a_0 \otimes a_1 \otimes \ldots \otimes a_n =
(a_0,a_1,\ldots,a_n) = a_0 da_1 \ldots da_n$ On $\Omega_V~A =
\oplus_n~\Omega^n_V~A$ one defines an algebra structure via the
multiplication $(a_0da_1 \ldots da_n)(a_{n+1}da_{n+2} \ldots da_k)$$=
\sum_{i=1}^n (-1)^{n-i} a_0da_1 \ldots d(a_ia_{i+1}) \ldots da_k$
$\Omega_V~A$ is a _differential graded algebra_ with differential $d :
\Omega^n_V~A \rightarrow \Omega^{n+1}_V~A$ defined by $d(a_0 da_1 \ldots
da_n) = da_0 da_1 \ldots da_n$ This may seem fairly abstract but in
case $A = C Q$ is a path algebra, then the bimodule $\Omega^n_V~A$ has a
$V$-generating set consisting of precisely the elements $p_0 dp_1
\ldots dp_n$ with all $p_i$ non-zero paths in $A$ and such that
$p_0p_1 \ldots p_n$ is also a non-zero path. One can put another
algebra multiplication on $\Omega_V~A$ which Cuntz and Quillen call the
_Fedosov product_ defined for an $n$-form $\omega$ and a form $\mu$ by
$\omega Circ \mu = \omega \mu -(-1)^n d\omega d\mu$ There is an
important relation between the two structures, the degree of a
differential form puts a filtration on $\Omega_V~A$ (with Fedosov
product) such that the _associated graded algebra_ is $\Omega_V~A$ with
the usual product. One can visualize the Fedosov product easily in the
case of path algebras because $\Omega_V~C Q$ with the Fedosov product is
again the path algebra of the quiver obtained by doubling up all the
arrows of $Q$. In our basic example when $Q$ is the quiver
$\xymatrix{\vtx{} \ar[rr]^u & & \vtx{} \ar@(ur,dr)^v} $ the
algebra of non-commutative differential forms equipped with the Fedosov
product is isomorphic to the path algebra of the quiver
$\xymatrix{\vtx{} \ar@/^/[rr]^{a=u+du} \ar@/_/[rr]_{b=u-du} & &
\vtx{} \ar@(u,ur)^{x=v+dv} \ar@(d,dr)_{y=v-dv}} $ with the
indicated identification of arrows with elements from $\Omega_V~C Q$.
Note however that we usually embed the algebra $C Q$ as the degree zero
differential forms in $\Omega_V~C Q$ with the usual multiplication and
that this embedding is no longer an algebra map (but a based linear map)
for the Fedosov product. For this reason, Cuntz and Quillen invent a
Yang-Mills type argument to “flow” this linear map to an algebra
embedding, but to motivate this we will have to say some things about
[curvatures][3].

[1]: http://www.neverendingbooks.org/index.php?p=352
[2]: http://www.neverendingbooks.org/index.php?p=349
[3]: http://www.neverendingbooks.org/index.php?p=353

Leave a Comment