Skip to content →

Tag: blogging

GAMAP 2008

Next week, our annual summer school Geometric and Algebraic Methods with Applications in Physics will start, once again (ive lost count which edition it is).

Because Isar is awol to la douce France, I’ll be responsible (once again) for the web-related stuff of the meeting. So, here a couple of requests to participants/lecturers :

  • if you are giving a mini-course and would like to have your material online, please contact me and i’ll make you an author of the Arts blog.
  • if you are a student attending the summerschool and would love to do some Liveblogging about the meeting, please do the same.

I’ll try to do some cross-posting here when it comes to my own lectures (and, perhaps, a few others). For now, I settled on ‘What is noncommutative geometry?’ as a preliminary title, but then, I’m in the position to change the program with a few keystrokes, so I’ll probably change it by then (or remove myself from it altogether…).

At times, I feel it would be more fun to do a few talks on Math-blogging. An entertaining hour could be spend on the forensic investigation of the recent Riemann-Hypothesis-hype in (a good part of) the math-blogosphere

One Comment

bloomsday 2 : BistroMath

Exactly one year ago this blog was briefly renamed MoonshineMath. The concept being that it would focus on the mathematics surrounding the monster group & moonshine. Well, I got as far as the Mathieu groups…

After a couple of months, I changed the name back to neverendingbooks because I needed the freedom to post on any topic I wanted. I know some people preferred the name MoonshineMath, but so be it, anyone’s free to borrow that name for his/her own blog.

Today it’s bloomsday again, and, as I’m a cyclical guy, I have another idea for a conceptual blog : the bistromath chronicles (or something along this line).

Here’s the relevant section from the Hitchhikers guide

Bistromathics itself is simply a revolutionary new way of understanding the behavior of numbers. …
Numbers written on restaurant checks within the confines of restaurants do not follow the same mathematical laws as numbers written on any other pieces of paper in any other parts of the Universe.
This single statement took the scientific world by storm. It completely revolutionized it.So many mathematical conferences got hold in such good restaurants that many of the finest minds of a generation died of obesity and heart failure and the science of math was put back by years.

Right, so what’s the idea? Well, on numerous occasions Ive stated that any math-blog can only survive as a group-blog. I did approach a lot of people directly, but, as you have noticed, without too much success… Most of them couldnt see themselves contributing to a blog for one of these reasons : it costs too much energy and/or it’s way too inefficient. They say : career-wise there are far cleverer ways to spend my energy than to write a blog. And… there’s no way I can argue against this.

Whence plan B : set up a group-blog for a fixed amount of time (say one year), expect contributors to write one or two series of about 4 posts on their chosen topic, re-edit the better series afterwards and turn them into a book.

But, in order to make a coherent book proposal out of blog-post-series, they’d better center around a common theme, whence the BistroMath ploy. Imagine that some of these forgotten “restaurant-check-notes” are discovered, decoded and explained. Apart from the mathematics, one is free to invent new recepies or add descriptions of restaurants with some mathematical history, etc. etc.

One possible scenario (but I’m sure you will have much better ideas) : part of the knotation is found on a restaurant-check of some Italian restaurant. This allow to explain Conway’s theory of rational tangles, give the perfect way to cook spaghetti to experiment with tangles and tell the history of Manin’s Italian restaurant in Bonn where (it is rumoured) the 1998 Fields medals were decided…

But then, there is no limit to your imagination as long as it somewhat fits within the framework. For example, I’d love to read the transcripts of a chat-session in SecondLife between Dedekind and Conway on the construction of real numbers… I hope you get the drift.

I’m not going to rename neverendingbooks again, but am willing to set up the BistroMath blog provided

  • Five to ten people are interested to participate
  • At least one book-editor shows an interest
    update : (16/06) contacted by first publisher

You can leave a comment or, if you prefer, contact me via email (if you’re human you will have no problem getting my address…).

Clearly, people already blogging are invited and are allowed to cross-post (in fact, that’s what I will do if it ever gets so far). Finally, if you are not willing to contribute blog-posts but like the idea and are willing to contribute to it in any other way, we are still auditioning for chanting monks

The small group of monks who had taken up hanging around the major research institutes singing strange chants to the effect that the Universe was only a figment of its own imagination were eventually given a street theater grant and went away.

And, if you do not like this idea, there will be another bloomsday-idea next year…

One Comment

Looking for F_un

There are only a handful of human activities where one goes to extraordinary lengths to keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, supporting the Belgian football team and … mathematics.

In recent years several people spend a lot of energy looking for properties of an elusive object : the field with one element $\mathbb{F}_1 $, or in French : “F-un”. The topic must have reached a level of maturity as there was a conference dedicated entirely to it : NONCOMMUTATIVE GEOMETRY AND GEOMETRY OVER THE FIELD WITH ONE ELEMENT.

In this series I’d like to find out what the fuss is all about, why people would like it to exist and what it has to do with noncommutative geometry. However, before we start two remarks :

The field $\mathbb{F}_1 $ does not exist, so don’t try to make sense of sentences such as “The ‘field with one element’ is the free algebraic monad generated by one constant (p.26), or the universal generalized ring with zero (p.33)” in the wikipedia-entry. The simplest proof is that in any (unitary) ring we have $0 \not= 1 $ so any ring must contain at least two elements. A more highbrow version : the ring of integers $\mathbb{Z} $ is the initial object in the category of unitary rings, so it cannot be an algebra over anything else.

The second remark is that several people have already written blog-posts about $\mathbb{F}_1 $. Here are a few I know of : David Corfield at the n-category cafe and at his old blog, Noah Snyder at the secret blogging seminar, Kea at the Arcadian functor, AC and K. Consani at Noncommutative geometry and John Baez wrote about it in his weekly finds.

The dream we like to keep alive is that we will prove the Riemann hypothesis one fine day by lifting Weil’s proof of it in the case of curves over finite fields to rings of integers.

Even if you don’t know a word about Weil’s method, if you think about it for a couple of minutes, there are two immediate formidable problems with this strategy.

For most people this would be evidence enough to discard the approach, but, we mathematicians have found extremely clever ways for going into denial.

The first problem is that if we want to think of $\mathbf{spec}(\mathbb{Z}) $ (or rather its completion adding the infinite place) as a curve over some field, then $\mathbb{Z} $ must be an algebra over this field. However, no such field can exist…

No problem! If there is no such field, let us invent one, and call it $\mathbb{F}_1 $. But, it is a bit hard to do geometry over an illusory field. Christophe Soule succeeded in defining varieties over $\mathbb{F}_1 $ in a talk at the 1999 Arbeitstagung and in a more recent write-up of it : Les varietes sur le corps a un element.

We will come back to this in more detail later, but for now, here’s the main idea. Consider an existent field $k $ and an algebra $k \rightarrow R $ over it. Now study the properties of the functor (extension of scalars) from $k $-schemes to $R $-schemes. Even if there is no morphism $\mathbb{F}_1 \rightarrow \mathbb{Z} $, let us assume it exists and define $\mathbb{F}_1 $-varieties by requiring that these guys should satisfy the properties found before for extension of scalars on schemes defined over a field by going to schemes over an algebra (in this case, $\mathbb{Z} $-schemes). Roughly speaking this defines $\mathbb{F}_1 $-schemes as subsets of points of suitable $\mathbb{Z} $-schemes.

But, this is just one half of the story. He adds to such an $\mathbb{F}_1 $-variety extra topological data ‘at infinity’, an idea he attributes to J.-B. Bost. This added feature is a $\mathbb{C} $-algebra $\mathcal{A}_X $, which does not necessarily have to be commutative. He only writes : “Par ignorance, nous resterons tres evasifs sur les proprietes requises sur cette $\mathbb{C} $-algebre.”

The algebra $\mathcal{A}_X $ originates from trying to bypass the second major obstacle with the Weil-Riemann-strategy. On a smooth projective curve all points look similar as is clear for example by noting that the completions of all local rings are isomorphic to the formal power series $k[[x]] $ over the basefield, in particular there is no distinction between ‘finite’ points and those lying at ‘infinity’.

The completions of the local rings of points in $\mathbf{spec}(\mathbb{Z}) $ on the other hand are completely different, for example, they have residue fields of different characteristics… Still, local class field theory asserts that their quotient fields have several common features. For example, their Brauer groups are all isomorphic to $\mathbb{Q}/\mathbb{Z} $. However, as $Br(\mathbb{R}) = \mathbb{Z}/2\mathbb{Z} $ and $Br(\mathbb{C}) = 0 $, even then there would be a clear distinction between the finite primes and the place at infinity…

Alain Connes came up with an extremely elegant solution to bypass this problem in Noncommutative geometry and the Riemann zeta function. He proposes to replace finite dimensional central simple algebras in the definition of the Brauer group by AF (for Approximately Finite dimensional)-central simple algebras over $\mathbb{C} $. This is the origin and the importance of the Bost-Connes algebra.

We will come back to most of this in more detail later, but for the impatient, Connes has written a paper together with Caterina Consani and Matilde Marcolli Fun with $\mathbb{F}_1 $ relating the Bost-Connes algebra to the field with one element.

6 Comments