Skip to content →

neverendingbooks Posts

why nag? (2)

Now, can
we assign such an non-commutative tangent space, that is a \mathbf{rep}~Q for some quiver Q, to \mathbf{rep}~\Gamma? As \Gamma = \mathbb{Z}_2 \ast \mathbb{Z}_3 we may
restrict any solution V=(X,Y)
in \mathbf{rep}~\Gamma to the finite subgroups \mathbb{Z}_2 and \mathbb{Z}_3. Now, representations of finite cyclic groups are
decomposed into eigen-spaces. For example

V \downarrow_{\mathbb{Z}_2} = V_+ \oplus V_-

where V_{\pm} = \{ v \in V~|~g.v = \pm v \} with g the
generator of \mathbb{Z}_2. Similarly,

V
\downarrow_{\mathbb{Z}_3} = V_1 \oplus V_{\rho} \oplus V_{\rho^2}

where \rho is a
primitive 3-rd root of unity. That is, to any solution V \in \mathbf{rep}~\Gamma we have found 5 vector spaces V_+,V_-,V_1,V_{\rho} and V_{\rho^2} so we would like them to correspond to the vertices
of our conjectured quiver Q.

What are the arrows of Q, or
equivalently, is there a natural linear map between the vertex-vector
spaces? Clearly, as

V_+ \oplus V_- = V = V_1 \oplus
V_{\rho} \oplus V_{\rho^2}

any choice of two bases of V (one
compatible with the left-side decomposition, the other with the
right-side decomposition) are related by a basechange matrix B which we
can decompose into six blocks (corresponding to the two decompositions
in 2 resp. 3 subspaces

B =
\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32}
\end{bmatrix}

which gives us 6 linear maps between the
vertex-vector spaces. Hence, to V \in \mathbf{rep}~\Gamma does correspond in a natural way a
representation of dimension vector \alpha=(a_1,a_2,b_1,b_2,b_3) (where dim(V_+)=a_1,\ldots,dim(V_{\rho^2})=b_3) of the quiver Q which
is of the form

\xymatrix{ &
& & & \vtx{b_1} \\ \vtx{a_1} \ar[rrrru]^(.3){B_{11}}
\ar[rrrrd]^(.3){B_{21}} \ar[rrrrddd]_(.2){B_{31}} & & & & \\ & & & &
\vtx{b_2} \\ \vtx{a_2} \ar[rrrruuu]_(.7){B_{12}} \ar[rrrru]_(.7){B_{22}}
\ar[rrrrd]_(.7){B_{23}} & & & & \\ & & & & \vtx{b_3}}

Clearly, not every representation of \mathbf{rep}~Q is obtained in this way. For starters, the
eigen-space decompositions force the numerical restriction

a_1+a_2 = dim(V) = b_1+b_2+b_3

on the
dimension vector and the square matrix constructed from the arrow-linear
maps must be invertible. However, if both these conditions are
satisfied, we can reconstruct the (isomorphism class) of the solution in
\mathbf{rep}~\Gamma from this quiver representation by taking

X = B^{-1} \begin{bmatrix} 1_{b_1} & 0 & 0 \\ 0 &
\rho^2 1_{b_2} & 0 \\ 0 & 0 & \rho 1_{b_3} \end{bmatrix} B
\begin{bmatrix} 1_{a_1} & 0 \\ 0 & -1_{a_2} \end{bmatrix}

Y = \begin{bmatrix} 1_{a_1} & 0 \\ 0 & -1_{a_2} \end{bmatrix}
B^{-1} \begin{bmatrix} 1_{b_1} & 0 & 0 \\ 0 & \rho^2 1_{b_2} & 0 \\ 0 &
0 & \rho 1_{b_3} \end{bmatrix} B

Hence, it makes sense to
view \mathbf{rep}~Q as a linearization of, or as a tangent space to,
\mathbf{rep}~\Gamma. However, though we reduced the study of
solutions of the polynomial system of equations to linear algebra, we
have not reduced the isomorphism problem in size. In fact, if we start
of with a matrix-solution V=(X,Y)
of size n we end up with a quiver-representation of total dimension 2n.
So, can we construct some sort of non-commutative normal space to the
isomorphism classes? That is, is there another quiver Q whose
representations can be interpreted as normal-spaces to orbits in certain
points?

Leave a Comment

seen this quiver?

The above quiver on 10 vertices is not symmetric, but has the
interesting property that every vertex has three incoming and three
outgoing arrows. If you have ever seen this quiver in another context,
please drop me a line. My own interest for it is that it is the ‘one
quiver’ for a non-commutative compactification of $GL_2(\mathbb{Z}) $. If
you like to know what I mean by this, you might consult the
Granada-notes which I hope to post over the weekend.

On a
different matter, if you want to know what all this hype on derived
categories and the classification project is about but got lost in the
pile of preprints, you might have a look at the Bourbaki talk by Raphael
Rouquier Categories
derivees et geometrie birationnelle
posted today on the arXiv.

Leave a Comment

necklaces (again)

I have
been posting before on the necklace Lie algebra : on Travis
Schedler's extension of the Lie algebra structure to a Lie bialgebra
and its deformation and more recently
in connection with Michel Van den Bergh's double Poisson paper.
Yesterday, Victor Ginzburg and Travis Schedler posted their paper Moyal quantization of
necklace Lie algebras
on the arXiv in which they give a Moyal-type
construction of the Hopf algebra deformation of the necklace Lie
bialgebra found by Schedler last year.
It would be nice if
someone worked out a few examples of these constructions in full detail.
But as often in the case of (wild) quiver situation it is not clear what
an 'interesting' example might be. For the finite and tame case
we have a full classification by (extended) Dynkin diagrams so a natural
class of examples but it isn't clear how to find gems in the
complement.
One natural source of double quiver situations seems
to come from what I called the One Quiver of a
formally smooth algebra. This one quiver of group algebras of some
interesting arithemetical groups such as the modular group
$PSL_2(\mathbb{Z}) $ and $SL_2(\mathbb{Z}) $ were calculated before and
turned out to be consisting of one (resp. two) components which are the
double of the tame quiver $\tilde{A}_5 $.
To obtain the double of
a wild quiver situation loook at the group $GL_2(\mathbb{Z}) = D_4
\bigstar_{D_2} D_6 $. In a previous post
I thought to have calculated it, but lately I found that this was
incorrect. Even the version I computed last week still had some mistakes
as Raf
Bocklandt
discovered. But as of yesterday we are pretty certain that
the one quiver for $GL_2(\mathbb{Z}) $ consists of two components. One of
these is the double quiver of an interesting wild quiver

$\xymatrix{& \vtx{} \ar@{=}[rr] \ar@{=}[dd] & & \vtx{} \ar@{=}[dd]
\\ \vtx{} \ar@{=}[ur] \ar@{=}[rr] \ar@{=}[dd] & & \vtx{} \ar@{.}[ur]
\ar@{.}[dd] \ar@{=}[dr] \\ & \vtx{} \ar@{.}[rr] \ar@{=}[dr] & & \vtx{}
\\ \vtx{} \ar@{=}[rr] \ar@{.}[ur] & & \vtx{} \ar@{=}[ur]} $

where each double line indicates that there is an arrow in each
direction between the vertices. So, it is an interwoven pattern of one
big cycle of length 6 (reminiscent of the modular group case) with 4
cycles of length 5. Perhaps the associated necklace Lie (bi)algebra and
its deformation might be interesting to work out.
However, the
second component of the one quiver for $GL_2(\mathbb{Z}) $ is _not_
symmetric.Maybe I will come back to the calculation of these quivers
later.

Leave a Comment