Skip to content →

neverendingbooks Posts

the taxicab curve

(After-math of last week’s second year lecture on elliptic
curves.)

We all know the story of Ramanujan and the taxicab, immortalized by Hardy

“I remember once going to see him when he was lying ill at Putney. I had ridden in taxicab no. 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it’s a very interesting number; it is the smallest number expressible as a sum of two cubes in two different ways’.”

When I was ten, I wanted to become an archeologist and even today I can get pretty worked-up about historical facts. So, when I was re-telling this story last week I just had to find out things like :

the type of taxicab and how numbers were displayed on them and, related to this, exactly when and where did this happen, etc. etc. Half an hour free-surfing further I know a bit more than I wanted.

Let’s start with the date of this taxicab-ride, even the year changes from source to source, from 1917 in the dullness of 1729 (arguing that Hardy could never have made this claim as 1729 is among other things the third Carmichael Number, i.e., a pseudoprime relative to EVERY base) to ‘late in WW-1’ here

Between 1917 and his return to India on march 13th 1919, Ramanujan was in and out a number of hospitals and nursing homes. Here’s an attempt to summarize these dates&places (based on the excellent paper Ramanujan’s Illness by D.A.B. Young).

(may 1917 -september 20th 1917) : Nursing Hostel, Thompson’s Lane in Cambridge.
(first 2 a 3 weeks of october 1917) : Mendip Hills Senatorium, near Wells in Somerset. (november 1917) : Matlock House Senatorium atMatlock in Derbyshire.
(june 1918 – november 1918) : Fitzroy House, a hospital in Fitzroy square in central London. (december 1918 – march 1919) : Colinette House, a private nursing home in Putney, south-west London. So, “he was lying ill at Putney” must have meant that Ramanujan was at Colinette House which was located 2, Colinette Road and a quick look with Google Earth

shows that the The British Society for the History of Mathematics Gazetteer is correct in asserting that “The house is no longer used as a nursing home and its name has vanished” as well as.”

“It was in 1919 (possibly January), when Hardy made the famous visit in the taxicab numbered 1729.”

Hence, we are looking for a London-cab early 1919. Fortunately, the London Vintage Taxi Association has a website including a taxi history page.

“At the outbreak of the First World War there was just one make available to buy, the Unic. The First World War devastated the taxi trade.
Production of the Unic ceased for the duration as the company turned to producing munitions. The majority of younger cabmen were called up to fight and those that remained had to drive worn-out cabs.
By 1918 these remnant vehicles were sold at highly inflated prices, often beyond the pockets of the returning servicemen, and the trade deteriorated.”

As the first post-war taxicab type was introduced in 1919 (which became known as the ‘Rolls-Royce of cabs’) more than likely the taxicab Hardy took was a Unic,

and the number 1729 was not a taxicab-number but part of its license plate. I still dont know whether there actually was a 1729-taxicab around at the time, but let us return to mathematics.

Clearly, my purpose to re-tell the story in class was to illustrate the use of addition on an elliptic curve as a mean to construct more rational solutions to the equation $x^3+y^3 = 1729 $ starting from the Ramanujan-points (the two solutions he was referring to) : P=(1,12) and Q=(9,10). Because the symmetry between x and y, the (real part of) curve looks like

and if we take 0 to be the point at infinity corresponding to the asymptotic line, the negative of a point is just reflexion along the main diagonal. The geometric picture of addition of points on the curve is then summarized
in

and sure enough we found the points $P+Q=(\frac{453}{26},-\frac{397}{26})$ and $(\frac{2472830}{187953},-\frac{1538423}{187953}) $ and so on by hand, but afterwards I had the nagging feeling that a lot more could have been said about this example. Oh, if Im allowed another historical side remark :

I learned of this example from the excellent book by Alf Van der Poorten Notes on Fermat’s last theorem page 56-57.

Alf acknowledges that he borrowed this material from a lecture by Frits Beukers ‘Oefeningen rond Fermat’ at the National Fermat Day in Utrecht, November 6th 1993.

Perhaps a more accurate reference might be the paper Taxicabs and sums of two cubes by Joseph Silverman which appeared in the april 1993 issue of The American Mathematical Monthly.

The above drawings and some material to follow is taken from that paper (which I didnt know last week). I could have proved that the Ramanujan points (and their reflexions) are the ONLY integer points on $x^3+y^3=1729 $.

In fact, Silverman gives a nice argument that there can only be finitely many integer points on any curve $x^3+y^3=A $ with $A \in \mathbb{Z} $ using the decomposition $x^3+y^3=(x+y)(x^2-xy+y^2) $.

So, take any factorization A=B.C and let $B=x+y $ and $C=x^2-xy+y^2 $, then substituting $y=B-x $ in the second one obtains that x must be an integer solution to the equation $3x^2-3Bx+(B^2-C)=0 $.

Hence, any of the finite number of factorizations of A gives at most two x-values (each giving one y-value). Checking this for A=1729=7.13.19 one observes that the only possibilities giving a square discriminant of the quadratic equation are those where $B=13, C=133 $ and $B=19, C=91 $ leading exactly to the Ramanujan points and their reflexions!

Sure, I mentioned in class the Mordell-Weil theorem stating that the group of rational solutions of an elliptic curve is always finitely generated, but wouldnt it be fun to determine the actual group in this example?

Surely, someone must have worked this out. Indeed, I did find a posting to sci.math.numberthy by Robert L. Ward : (in fact, there is a nice page on elliptic curves made from clippings to this newsgroup).

The Mordell-Weil group of the taxicab-curve is isomorphic to $\mathbb{Z} \oplus \mathbb{Z} $ and the only difference with Robert Wards posting was that I found besides his generator

$P=(273,409) $ (corresponding to the Ramanujan point (9,10)) as a second generator the point
$Q=(1729,71753) $ (note again the appearance of 1729…) corresponding to the rational solution $( -\frac{37}{3},\frac{46}{3}) $ on the taxicab-curve.

Clearly, there are several sets of generators (in fact that’s what $GL_2(\mathbb{Z}) $ is all about) and as our first generators were the same all I needed to see was that the point corresponding to the second Ramanujan point (399,6583) was of the form $\pm Q + a P $ for some integer a. Points and their addition is also easy to do with sage :

sage: P=T([273,409])
sage: Q=T([1729,71753])
sage: -P-Q
(399 : 6583 : 1)

and we see that the second Ramanujan point is indeed of the required form!

2 Comments

anabelian geometry

Last time we saw
that a curve defined over $\overline{\mathbb{Q}} $ gives rise
to a permutation representation of $PSL_2(\mathbb{Z}) $ or one
of its subgroups $\Gamma_0(2) $ (of index 2) or
$\Gamma(2) $ (of index 6). As the corresponding
monodromy group is finite, this representation factors through a normal
subgroup of finite index, so it makes sense to look at the profinite
completion
of $SL_2(\mathbb{Z}) $, which is the inverse limit
of finite
groups $\underset{\leftarrow}{lim}~SL_2(\mathbb{Z})/N $
where N ranges over all normalsubgroups of finite index. These
profinte completions are horrible beasts even for easy groups such as
$\mathbb{Z} $. Its profinite completion
is

$\underset{\leftarrow}{lim}~\mathbb{Z}/n\mathbb{Z} =
\prod_p \hat{\mathbb{Z}}_p $

where the right hand side
product of p-adic integers ranges over all prime numbers! The
_absolute Galois group_
$G=Gal(\overline{\mathbb{Q}}/\mathbb{Q}) $ acts on all curves
defined over $\overline{\mathbb{Q}} $ and hence (via the Belyi
maps ans the corresponding monodromy permutation representation) there
is an action of $G $ on the profinite completions of the
carthographic groups.

This is what Grothendieck calls anabelian
algebraic geometry

Returning to the general
case, since finite maps can be interpreted as coverings over
$\overline{\mathbb{Q}} $ of an algebraic curve defined over
the prime field $~\mathbb{Q} $ itself, it follows that the
Galois group $G $ of $\overline{\mathbb{Q}} $ over
$~\mathbb{Q} $ acts on the category of these maps in a
natural way.
For instance, the operation of an automorphism
$~\gamma \in G $ on a spherical map given by the rational
function above is obtained by applying $~\gamma $ to the
coefficients of the polynomials P , Q. Here, then, is that
mysterious group $G $ intervening as a transforming agent on
topologico- combinatorial forms of the most elementary possible
nature, leading us to ask questions like: are such and such oriented
maps ‚conjugate or: exactly which are the conjugates of a given
oriented map? (Visibly, there is only a finite number of these).
I considered some concrete cases (for coverings of low degree) by
various methods, J. Malgoire considered some others ‚ I doubt that
there is a uniform method for solving the problem by computer. My
reflection quickly took a more conceptual path, attempting to
apprehend the nature of this action of G.
One sees immediately
that roughly speaking, this action is expressed by a certain
outer action of G on the profinite com- pactification of the
oriented cartographic group $C_+^2 = \Gamma_0(2) $ , and this
action in its turn is deduced by passage to the quotient of the
canonical outer action of G on the profinite fundamental group
$\hat{\pi}_{0,3} $ of
$(U_{0,3})_{\overline{\mathbb{Q}}} $ where
$U_{0,3} $ denotes the typical curve of genus 0 over the
prime field Q, with three points re- moved.
This is how my
attention was drawn to what I have since termed anabelian
algebraic geometry
, whose starting point was exactly a study
(limited for the moment to characteristic zero) of the action of
absolute Galois groups (particularly the groups Gal(K/K),
where K is an extension of finite type of the prime field) on
(profinite) geometric fundamental groups of algebraic varieties
(defined over K), and more particularly (break- ing with a
well-established tradition) fundamental groups which are very far
from abelian groups (and which for this reason I call
anabelian).
Among these groups, and very close to
the group $\hat{\pi}_{0,3} $ , there is the profinite
compactification of the modular group $Sl_2(\mathbb{Z}) $,
whose quotient by its centre ±1 contains the former as congruence
subgroup mod 2, and can also be interpreted as an oriented
cartographic group, namely the one classifying triangulated
oriented maps (i.e. those whose faces are all triangles or
monogons).

and a bit further, on page
250

I would like to conclude this rapid outline
with a few words of commentary on the truly unimaginable richness
of a typical anabelian group such as $SL_2(\mathbb{Z}) $
doubtless the most remarkable discrete infinite group ever
encountered, which appears in a multiplicity of avatars (of which
certain have been briefly touched on in the present report), and which
from the point of view of Galois-Teichmuller theory can be
considered as the fundamental ‚building block‚ of the
Teichmuller tower
The element of the structure of
$Sl_2(\mathbb{Z}) $ which fascinates me above all is of course
the outer action of G on its profinite compactification. By
Bielyi’s theorem, taking the profinite compactifications of subgroups
of finite index of $Sl_2(\mathbb{Z}) $, and the induced
outer action (up to also passing to an open subgroup of G), we
essentially find the fundamental groups of all algebraic curves (not
necessarily compact) defined over number fields K, and the outer
action of $Gal(\overline{K}/K) $ on them at least it is
true that every such fundamental group appears as a quotient of one
of the first groups.
Taking the anabelian yoga
(which remains conjectural) into account, which says that an anabelian
algebraic curve over a number field K (finite extension of Q) is
known up to isomorphism when we know its mixed fundamental group (or
what comes to the same thing, the outer action of
$Gal(\overline{K}/K) $ on its profinite geometric
fundamental group), we can thus say that
all algebraic
curves defined over number fields are contained in the profinite
compactification $\widehat{SL_2(\mathbb{Z})} $ and in the
knowledge of a certain subgroup G of its group of outer
automorphisms!

To study the absolute
Galois group $Gal(\overline{\mathbb{\mathbb{Q}}}/\mathbb{Q}) $ one
investigates its action on dessins denfants. Each dessin will be part of
a finite family of dessins which form one orbit under the Galois action
and one needs to find invarians to see whether two dessins might belong
to the same orbit. Such invariants are called _Galois invariants_ and
quite a few of them are known.

Among these the easiest to compute
are

  • the valency list of a dessin : that is the valencies of all
    vertices of the same type in a dessin
  • the monodromy group of a dessin : the subgroup of the symmetric group $S_d $ where d is
    the number of edges in the dessin generated by the partitions $\tau_0 $
    and $\tau_1 $ For example, we have seen
    before
    that the two
    Mathieu-dessins

form a Galois orbit. As graphs (remeber we have to devide each
of the edges into two and the midpoints of these halfedges form one type
of vertex, the other type are the black vertices in the graphs) these
are isomorphic, but NOT as dessins as we have to take the embedding of
them on the curve into account. However, for both dessins the valency
lists are (white) : (2,2,2,2,2,2) and (black) :
(3,3,3,1,1,1) and one verifies that both monodromy groups are
isomorphic to the Mathieu simple group $M_{12} $ though they are
not conjugated as subgroups of $S_{12} $.

Recently, new
Galois invariants were obtained from physics. In Children’s drawings
from Seiberg-Witten curves

the authors argue that there is a close connection between Grothendiecks
programme of classifying dessins into Galois orbits and the physics
problem of classifying phases of N=1 gauge theories…

Apart
from curves defined over $\overline{\mathbb{Q}} $ there are
other sources of semi-simple $SL_2(\mathbb{Z}) $
representations. We will just mention two of them and may return to them
in more detail later in the course.

Sporadic simple groups and
their representations
There are 26 exceptional finite simple groups
and as all of them are generated by two elements, there are epimorphisms
$\Gamma(2) \rightarrow S $ and hence all their representations
are also semi-simple $\Gamma(2) $-representations. In fact,
looking at the list of ‘standard generators’ of the sporadic
simples

(here the conjugacy classes of the generators follow the
notation of the Atlas project) we see that all but
possibly one are epimorphic images of $\Gamma_0(2) = C_2 \ast
C_{\infty} $ and that at least 12 of then are epimorphic images
of $PSL_2(\mathbb{Z}) = C_2 \ast
C_3 $.

Rational conformal field theories Another
source of $SL_2(\mathbb{Z}) $ representations is given by the
modular data associated to rational conformal field theories.

These
representations also factor through a quotient by a finite index normal
subgroup and are therefore again semi-simple
$SL_2(\mathbb{Z}) $-representations. For a readable
introduction to all of this see chapter 6 \”Modular group
representations throughout the realm\” of the
book Moonshine beyond the monster the bridge connecting algebra, modular forms and physics by Terry
Gannon
. In fact, the whole book
is a good read. It introduces a completely new type of scientific text,
that of a neverending survey paper…

Leave a Comment

mathML versus LaTeXRender

No math
today. If you’re interested in the latest on noncommutative geometry,
head over to the NCG-blog where Alain Connes has a post on
Time.
Still, Alain’s post is a good illustration of what Ill be rambling about
TeX and how to use it in a blog.

If you’re running a math-blog,
sooner or later you want to say something more than new-age speak like
‘points talking to each other’ and get to the essence of it. In short,
you want to talk math and it’s a regrettable fact that math doesnt go
well with ASCII. In everyday life we found a way around this : we all
use TeX to write papers and even email-wise (among mathematicians) we
write plain TeX-commands as this language is more common to us than
English. But, plain TeX and the blogosphere don’t mix well. If you’re
expecting only professional mathematicians to read what you write, you
might as well arXiv your thoughts. Im convinced the majority of people
coming here (for whatever reason) dont speak plain-TeX. Fortunately,
there is technology to display TeX-symbols on a blog. Personally, I was
an early adapter to
LaTeXRender and even today a
fair share of page-views relates to the few
posts I did on
how to get latexrender working on a mac. Some time ago I
switched to mathML and now I’m
regretting I ever did…

Mind you, I’m convinced that mathML is the
‘proper’ way to get TeX to the internet but there are at the moment some
serious drawbacks. For starters, it is highly user-unfriendly. You
simply cannot expect people to switch browsers (as well as installing
extra fonts) just because they come to your site (or you have to be a
pretty arrogant git). Speaking for myself, Im still having (against my
better judgment) Safari as my default browser, so when I come to a site
like the n-category cafe I just
skim the plain-text in between and if (and only if) the topic interests
me tremendously I’ll allow myself to switch to Flock or Firefox to read
the post in detail. I’m convinced most of you have a similar
surfing-attitude. MathML also has serious consequences on the
server-side. If you want to serve mathML you have to emit headers which
expect everything to follow to be purified XHTML. If I ever forget a
closing tag in a post, this is enough to break down NeverEndingBooks to
all Firefox-users. I’ve been writing HTML since the times when the best
browser around was something called NCSA Mosaic so Ive a
pretty lax attitude to end-tags (especially in IMG-tags) and Im just
getting too old to change these bad habbits now… It seems I’m not the
only one. Many developers of WordPress-plugins write bad XHTML-code, so
the last couple of weeks I’ve been spending more time fixing up code
than writing posts. If you want to run a mathML-wordpress site you might
find the following hints helpfull. If you get a ‘yellow screen of
death’ when viewing your site with Firefox, chances are that one of your
plugin-authors missed a closing tag in the HTML-rendering of his/her
plugin. As a rule of thumb : go for the IMG-tags first! I’m sorry to
say, but Latexrender-Steve
is among the XHTML-offenders. (On a marginal note, LaTeXrender also has
its drawbacks : to mathematicians this may seem incredible but what
Latexrender does to get one expression displayed is to TeX an entire
file, get the image from the ps-file turn it into a gif and display it,
so one gets a GIF-folder of enrmous proportions. Hence, use Latexrender
only if you have your own server and dont have to care about memory
constraints. Another disadvantedge was that the GIFs were displayed with
a vertical offset, but this has been solved recently (use the ‘offset
beta’ files in the distribution)). Wrt. to that offset-beta version, use
this latex.php file instead (I
changed the IMG-line). Some plugins may not serve the correct headers
to display mathML. So, if you want to allow readers to have a
printer-friendly version of your mathML-post, get the WP-print plugin BUT
change to this wp-print.php file in order to
send the proper headers. Sometimes there are just forgotten lines/tags
in the code, such as in the [future calendar plugin](http://anthologyoi.com/wordpress/plugins/future-posts-calendar-
plugin.html). So, please use this version
of the future.calendar.php file. And so on, and so on. The joys of
trying to maintain a mathML-based blog… So, no surprise I’m seriously
considering to ditch mathML and change to normal headers soon. One of
the things I like about LaTeXRender is that it can be extended, meaning
that you can get your own definitions and packages loaded whereas with
mathML you’re bound to write iTeX, which Ill never manage. But, again,
mathML will be the correct technology once all major browsers are mathML
capable and the font-problem is resolved. Does anyone know whether
Safari 3 (in Leopard, that is Mac OS 10.5 to the rest of you) will be
mathML-able?

Leave a Comment