Skip to content →

neverendingbooks Posts

kvraagetaan

Sorry, this is categorified (sic) as ‘off’, but believe me, it’s way, way, off…

Still, it’s my best shot at getting the Nobel Peace Prize. Here’s my proposal : in whatever country you live, search for an unemployed band (cant be that hard), convince them to write 20something oneliners about their childhood memories (assuming they’re 30somethings or worse (or even better for that matter)), we will provide the easy-listening music (hear below). If they are into a specific dialect, let them go all way (will only add to the hype).

The remaining step to stardom : download the song to YouTube, sit back and see the world change around you…

(btw. the clip shouldn’t be a problem either, we propose the format : a 20a30 years old suburban living room in the main frame (in which the band will perform their song), on top : two smaller frames giving ample hints to decode the dialect-lyrics (see below).

Before we go any further, I think it’s best if you click the play button below in order to get at least an idea (in Belgium : an all time record of weeks number one in the charts…). You will not understand a word (and you better stop when the song stops, about half of the videoclip-time) but if you don’t, you won’t understand a word of what comes next

Right, now you know at least a bit of the Fixkes’ craze in Flandres(belgium). It’s a simple and therefore ingenious idea : sing about the childhood-memories of 35-50something people (okay, probably they aimed at a 30-40yrs. public, but I’m just trying dramatically to squeeze myself in…), but do it encrypted (that is, in dialect, or rather, let the public decrypt your phrases), fun assured…

For weeks now they play this song around 18hrs when we are having dinner, and each and every time, ThePartner and me try to decode another line of the lyrics, and do this so vehemently that PD2 feels uncertain whether we’ll be all there the next morning…

I’d better admit, sometimes I was plain wrong. When they sing “er was nog gene gsm gene vtm en niemand die a hannibal of murdock wilde zen ” (translated into something like: ‘there was still no GSM nor VTM(commercial TV), and no-one wanted to be Hannibal or Murdock’)

i was thinking : they are talking about commercial TV, so they must be talking about Murdoch (NOT Murdock…). I’m just too old to know about the bloody A-team (I’m more of a Starsky&Hutch or Dempsey&Makepeace person).

ThePartner, laughing and rolling all over the carpet…

Today was a better day (for me). We were decoding the lines

“showen in de boksauto’s
outrun in plaats van onze commodore”

(translated into something like “to show off in our boxing cars, outrun instead of our commodore”.)

ThePartner believes that “Outrun” and “Commodore” are names for places where you could drive ‘boxing-cars’ (or whathever they’re called in proper AngloAmerican, driving cars on a fair)… but for me it was plain clear that Commodore meant THE Commodore64-console!

A heated debate followed until we thought something like ‘wouldn’t they have a clip on YouTube by now?’ and sure enough the clip proved me right…). But now that I’ve seen the clip, I dread the forthcoming decoding of “en buurman wa doet u nu
veur ons allereerste tetjes”
(translated as “Neighbour what are you doing now? Our very first tits”)

The pervert I am, I know perfectly well what they are singing about (alas, the video-clip doesnt provide proof. probably due to exaggerated rights for a section of the Flodders movie (parental-warning-signs-flashing-all-over-the-screen). I’m not sure whether I will enter a fight on this one or just feign ignorance…

Btw. the title of the track is “Kvraagetaan” which is a perfect Flemish sentence to anyone of my generation, (or younger by at most 20 yrs.)

When we were at primary school the whole bizness of relationships was pretty easy either something was ‘on’ or it was ‘off’.

So, if you’d fancied a girl (or conversely) all needed was the question ‘I ask it on’ (Kvraagetaan).

When my daugthers were the same age, romance had dropped quite a bit.

They had to ask something like “Wilde gij op mij zijn?” which translates into “Do you want to be ontop of me?” which leaves much less to the imagination…

Still, looking around in my circle of acquaintances, I feel that most of them really enjoy a popular song, full of old-time-memories, to start a heated debate with their loved ones. If only all nations would follow Flandres-path in this, the world would be a lot more fun and peaceful. Thank you!

Leave a Comment

group think 2

Someone from down under commented on the group think post yesterday :

Nice post, but I might humbly suggest that there’s not much in it that anyone would disagree with. I’d be interested in your thoughts on the following:
1. While many doomed research programs have the seven symptoms you mention, so do some very promising research programs. For instance, you could argue that Grothendieck’s school did. While it did eventually explode, it remains one of the high points in the history of mathematics. But at the time, many people (Mordell, Siegel) thought it was all garbage. Indeed there was even doubt into the late eighties. Is there anything close to a necessary and sufficient condition that an outsider can use to get some idea of whether a research group is doing work that will last?
2. Pretty much everyone thinks they’re underappreciated. It’s easy to advise them to pull a Perelman because it costs you nothing. But most unappreciated researchers are unappreciated for a good reason. How can unappreciated researchers decide whether their ideas really are good or not before spending ten years of their lives finding out?

First the easy bit : the ‘do a Perelman’-sentence seems to have been misread by several people (probably due to my inadequate English). I never suggested ‘unappreciated researchers’ to pull a Perelman but rather the key figures in seemingly successful groups making outrageous claims for power-reasons. Here is what I actually wrote

An aspect of these groupthinking science-groups that worries me most of all is their making of exagerated claims to potential applications, not supported (yet) by solid proof. Short-time effect may be to attract more people to the subject and to keep doubting followers on board, but in the long term (at least if the claimed results remain out of reach) this will destroy the subject itself (and, sadly enough, also closeby subjects making no outrageous claims!). My advice to people making such claims is : do a Perelman! Rather than doing a PR-job, devote yourself for as long as it takes to prove your hopes, somewhere in splendid isolation and come back victoriously. I have a spare set of keys if you are in search for the perfect location!
Before I will try to answer both questions let me stress that this is just my personal opinion to which I attach no particular value. Sure, I will forget things and will over-stress others. You can always leave a comment if you think I did, but I will not enter a discussion. I think it is important that a person develops his or her own scientific ethic and tries to live by it. 1. Is there anything close to a necessary and sufficient condition that an outsider can use to get some idea of whether a research group is doing work that will last? Clearly, the short answer to this is “no”. Still, there are some signs an outsider might pick up to form an opinion. – What is the average age of the leading people in the group? (the lower, the better) – The percentage of talks given by young people at a typical conference of the group (the higher, the better) – The part of a typical talk in the subject spend setting up notation, referring to previous results and namedropping (the lower, the better) – The number of group-outsiders invited to speak at a typical conference (the higher, the better) – The number of self-references in a typical paper (the lower, the better) – The number of publications by the group in non-group controlled journals (the higher, the better) – The number of group-controlled journals (the lower, the better) – The readablity of survey papers and textbooks on the subject (the higher, the better) – The complexity of motivating examples not covered by competing theories (the lower, the better) – The number of subject-gurus (the higher, the better) – The number of phd-students per guru (the lower, the better) – The number of main open problems (the higher, the better) – The Erdoes-like number of a typical group-member wrt. John Conway (the lower, the better) Okay, Im starting to drift but I hope you get the point. It is not that difficult to set up your own tools to measure the amount to which a scientific group suffers from group think. Whether the group will make a long-lasting contribution is another matter which is much harder to predict. Here, I would go for questions like : – Does the theory offer a new insight into classical & central mathematical objects such as groups, curves, modular forms, Dynkin diagrams etc. ? – Does the theory offer tools to reduce the complexity of a problem or does is instead add a layer of technical complexity? That is, are they practicing mathematics or obscurification? 2. How can unappreciated researchers decide whether their ideas really are good or not before spending ten years of their lives finding out? Here is my twofold advice to all the ‘unappreciated’ : (1) be at least as critical to your own work as you are to that of others (it is likely you will find out that you are rightfully under-appreciated compared to others) and (2) enjoy the tiny tokens of appreciation because they are likely all that you will ever get. Speaking for myself, I do not feel unappreciated compared to what I did. I did prove a couple of good results to which adequate reference is given and I had a couple of crazy ideas which were ridiculed by some at the time. A silly sense of satisfaction comes from watching the very same people years later fall over each other trying to reclaim some of the credit for these ideas. Okay, it may not have the same status of recognition as a Fields medal or a plenary talk at the ICM but it is enough to put a smile on my face from time to time and to continue stubbornly with my own ideas.

Leave a Comment

down with determinants

The categorical cafe has a guest post by Tom Leinster Linear Algebra Done Right on the book with the same title by Sheldon Axler. I haven’t read the book but glanced through his online paper Down with determinants!. Here is ‘his’ proof of the fact that any n by n matrix A has at least one eigenvector. Take a vector $v \in \mathbb{C}^n $, then as the collection of vectors ${ v,A.v,A^2.v,\ldots,A^n.v } $ must be linearly dependent, there are complex numbers $a_i \in \mathbb{C} $ such that $~(a_0 + a_1 A + a_2 A^2 + \ldots + a_n A^n).v = \vec{0} \in \mathbb{C}^n $ But then as $\mathbb{C} $ is algebraically closed the polynomial on the left factors into linear factors $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = c (x-r_1)(x-r_2) \ldots (x-r_n) $ and therefore as $c(A-r_1I_n)(A-r_2I_n) \ldots (A-r_nI_n).v = \vec{0} $ from which it follows that at least one of the linear transformations $A-r_j I_n $ has a non-trivial kernel, whence A has an eigenvector with eigenvalue $r_j $. Okay, fine, nice even, but does this simple minded observation warrant the extreme conclusion of his paper (on page 18) ?

As mathematicians, we often read a nice new proof of a known theorem, enjoy the different approach, but continue to derive our internal understanding from the method we originally learned. This paper aims to change drastically the way mathematicians think about and teach crucial aspects of linear algebra.

The simple proof of the existence of eigenvalues given in Theorem 2.1 should be the one imprinted in our minds, written on our blackboards, and published in our textbooks. Generalized eigenvectors should become a central tool for the understanding of linear operators. As we have seen, their use leads to natural definitions of multiplicity and the characteristic polynomial. Every mathematician and every linear algebra student should at least remember that the generalized eigenvectors of an operator always span the domain (Proposition 3.4)—this crucial result leads to easy proofs of upper-triangular form (Theorem 6.2) and the Spectral Theorem (Theorems 7.5 and 8.3).

Determinants appear in many proofs not discussed here. If you scrutinize such proofs, you’ll often discover better alternatives without determinants. Down with Determinants!

I welcome all new proofs of known results as they allow instructors to choose the one best suited to their students (and preferable giving more than one proof showing that there is no such thing as ‘the best way’ to prove a mathematical result). What worries me is Axler’s attitude shared by extremists and dogmatics world-wide : they are so blinded by their own right that they impoverish their own lifes (and if they had their way, also that of others) by not willing to consider other alternatives. A few other comments :

  1. I would be far more impressed if he had given a short argument for the one line he skates over in his proof, that of $\mathbb{C} $ being algebraically closed. Does anyone give a proof of this fact anymore or is this one of the few facts we expect first year students to accept on faith?

    1. I dont understand this aversity to the determinant (probably because of its nonlinear character) but at the same time not having any problems with successive powers of matrices. Surely he knows that the determinant is a fixed $~\mathbb{Q}~ $-polynomial in the traces (which are linear!) of powers of the matrix.

    2. The essense of linear algebra is that by choosing a basis cleverly one can express a linear operator in a extremely nice matrix form (a canonical form) so that all computations become much more easy. This crucial idea of considering different bases and their basechange seems to be missing from Axler’s approach. Moreover, I would have thought that everyone would know these days that ‘linear algebra done right’ is a well developed topic called ‘representation theory of quivers’ but I realize this might be viewed as a dogmatic statement. Fortunately someone else is giving the basic linear algebra courses here in Antwerp so students are spared my private obsessions (at least the first few years…). In [his post](http://golem.ph.utexas.edu/category/2007/05/ linear_algebra_done_right.html) Leistner askes “What are determinants good for?” I cannot resist mentioning a trivial observation I made last week when thinking once again about THE rationality problem and which may be well known to others. Recall from the previous post that rationality of the quotient variety of matrix-couples $~(A,B) \in M_n(\mathbb{C}) \oplus M_n(\mathbb{C}) / GL_n $ under _simultaneous conjugation_ is a very hard problem. On the other hand, the ‘near miss’ problem of the quotient variety of matrix-couples $ { (A,B)~|~det(A)=0~} / GL_n $ is completely trivial. It is rational for all n. Here is a one-line proof. Consider the quiver $\xymatrix{\vtx{} \ar@/^2ex/[rr] & & \vtx{} \ar@(ur,dr) \ar@/^2ex/[ll]} $ then the dimension vector (n-1,n) is a Schur root and the first fundamental theorem of $GL_n $ (see for example Hanspeter Krafts excellent book on invariant theory) asserts that the corresponding quotient variety is the one above. The result then follows from Aidan Schofield’s paper Birational classification of moduli spaces of representations of quivers. Btw. in this special case one does not have to use the full force of Aidan’s result. Zinovy Reichstein, who keeps me updated on events in Atlanta, emailed the following elegant short proof Here is an outline of a geometric proof. Let $X = {(A, B) : det(A) = 0} \subset M_n^2 $ and $Y = \mathbb{P}^{n-1} \times M_n $. Applying the no-name lemma to the $PGL_n $-equivariant dominant rational map $~X \rightarrow Y $ given by $~(A, B) \rightarrow (Ker(A), B) $ (which makes X into a vector bundle over a dense open $PGL_n $-invariant subset of Y), we see that $X//PGL_n $ is rational over $Y//PGL_n $ On the other hand, $Y//PGLn = M_n//PGL_n $ is an affine space. Thus $X//PGL_n $ is rational. The moment I read this I knew how to do this quiver-wise and that it is just another Brauer-Severi type argument so completely inadequate to help settling the genuine matrix-problem. Update on the paper by Esther Beneish : Esther did submit the paper in february.

Leave a Comment