Skip to content →

neverendingbooks Posts

return of the cat ceilidh

I couldn’t believe my eyes. I was watching an episode of numb3rs, ‘undercurrents’ to be precise, and there it was, circled in the middle of the blackboard, CEILIDH, together with some of the key-exchange maps around it…

Only, the plot doesn’t involve any tori-crypto… okay, there is an I-Ching-coded-tattoo which turns out to be a telephone number, but that’s all. Still, this couldn’t just be a coincidence. Googling for ‘ceilidh+numbers‘ gives as top hit the pdf-file of an article Alice in NUMB3Rland written by … Alice Silverberg (of the Rubin-Silverberg paper starting tori-cryptography). Alice turns out to be one of the unpaid consultants to the series. The 2-page article gives some insight into how ‘some math’ gets into the script

Typically, Andy emails a draft of the
script to the consultants. The FBI plot
is already in place, and the writers want
mathematics to go with it. The placeholder “math” in the draft is often nonsense or
jargon; the sort of things people with no
mathematical background might find by
Googling, and think was real math. Since
there’s often no mathematics that makes
sense in those parts of the script, the best
the consultants can do is replace jargon
that makes us cringe a lot with jargon that
makes us cringe a little.

From then on, it’s the Telephone Game.
The consultants email Andy our suggestions (“replace ‘our discrete universes’
with ‘our disjoint universes'”; “replace
the nonsensical ‘we’ve tried everything
-a full frequency analysis, a Vignere
deconstruction- we even checked for
a Lucas sequence’ with the slightly less
nonsensical ‘It’s much too short to try
any cryptanalysis on. If it were longer
we could try frequency analyses, or try
to guess what kind of cryptosystem it is
and use a specialized technique. For example, if it were a long enough Vigenere
cipher we could try a Kasiski test or an
index-of-coincidence analysis’). Andy
chooses about a quarter of my sugges-
tions and forwards his interpretation
of them to the writers and producers.
The script gets changed, and then the
actors ad lib something completely dif-
ferent (‘disjointed universes’: cute, but
loses the mathematical allusion; ‘Kasiski
exam’ : I didn’t mean that kind of ‘test’).

She ends her article with :

I have mixed feelings about NUMB3RS. I still have concerns about the violence, the depiction of women, and the pretense
that the math is accurate. However, if NUMB3RS could interest people in the power of mathematics enough for society
to greater value and support mathematics teaching, learning, and research, and
motivate more students to learnthat would be a positive step.

Further, there is a whole blog dedicated to some of the maths featuring in NUMB3RS, the numb3rs blog. And it was the first time I had to take a screenshot of a DVD, something usually off limits to the grab.app, but there is a simple hack to do it…

5 Comments

Bost-Connes for ringtheorists

Over the last days I’ve been staring at the Bost-Connes algebra to find a ringtheoretic way into it. Ive had some chats about it with the resident graded-guru but all we came up with so far is that it seems to be an extension of Fred’s definition of a ‘crystalline’ graded algebra. Knowing that several excellent ringtheorists keep an eye on my stumblings here, let me launch an appeal for help :

What is the most elegant ringtheoretic framework in which the Bost-Connes Hecke algebra is a motivating example?

Let us review what we know so far and extend upon it with a couple of observations that may (or may not) be helpful to you. The algebra $\mathcal{H} $ is the algebra of $\mathbb{Q} $-valued functions (under the convolution product) on the double coset-space $\Gamma_0 \backslash \Gamma / \Gamma_0 $ where

$\Gamma = { \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix}~:~a,b \in \mathbb{Q}, a > 0 } $ and $\Gamma_0 = { \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}~:~n \in \mathbb{N}_+ } $

We have seen that a $\mathbb{Q} $-basis is given by the characteristic functions $X_{\gamma} $ (that is, such that $X_{\gamma}(\gamma’) = \delta_{\gamma,\gamma’} $) with $\gamma $ a rational point represented by the couple $~(a,b) $ (the entries in the matrix definition of a representant of $\gamma $ in $\Gamma $) lying in the fractal comb

defined by the rule that $b < \frac{1}{n} $ if $a = \frac{m}{n} $ with $m,n \in \mathbb{N}, (m,n)=1 $. Last time we have seen that the algebra $\mathcal{H} $ is generated as a $\mathbb{Q} $-algebra by the following elements (changing notation)

$\begin{cases}X_m=X_{\alpha_m} & \text{with } \alpha_m = \begin{bmatrix} 1 & 0 \\ 0 & m \end{bmatrix}~\forall m \in \mathbb{N}_+ \\
X_n^*=X_{\beta_n} & \text{with } \beta_n = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{n} \end{bmatrix}~\forall n \in \mathbb{N}_+ \\
Y_{\gamma} = X_{\gamma} & \text{with } \gamma = \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix}~\forall \lambda \in \mathbb{Q}/\mathbb{Z} \end{cases} $

Using the tricks of last time (that is, figuring out what functions convolution products represent, knowing all double-cosets) it is not too difficult to prove the defining relations among these generators to be the following (( if someone wants the details, tell me and I’ll include a ‘technical post’ or consult the Bost-Connes original paper but note that this scanned version needs 26.8Mb ))

(1) : $X_n^* X_n = 1, \forall n \in \mathbb{N}_+$

(2) : $X_n X_m = X_{nm}, \forall m,n \in \mathbb{N}_+$

(3) : $X_n X_m^* = X_m^* X_n, \text{whenever } (m,n)=1$

(4) : $Y_{\gamma} Y_{\mu} = Y_{\gamma+\mu}, \forall \gamma,mu \in \mathbb{Q}/\mathbb{Z}$

(5) : $Y_{\gamma}X_n = X_n Y_{n \gamma},~\forall n \in \mathbb{N}_+, \gamma \in \mathbb{Q}/\mathbb{Z}$

(6) : $X_n Y_{\lambda} X_n^* = \frac{1}{n} \sum_{n \delta = \gamma} Y_{\delta},~\forall n \in \mathbb{N}_+, \gamma \in \mathbb{Q}/\mathbb{Z}$

Simple as these equations may seem, they bring us into rather uncharted ringtheoretic territories. Here a few fairly obvious ringtheoretic ingredients of the Bost-Connes Hecke algebra $\mathcal{H} $

the group-algebra of $\mathbb{Q}/\mathbb{Z} $

The equations (4) can be rephrased by saying that the subalgebra generated by the $Y_{\gamma} $ is the rational groupalgebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ of the (additive) group $\mathbb{Q}/\mathbb{Z} $. Note however that $\mathbb{Q}/\mathbb{Z} $ is a torsion group (that is, for all $\gamma = \frac{m}{n} $ we have that $n.\gamma = (\gamma+\gamma+ \ldots + \gamma) = 0 $). Hence, the groupalgebra has LOTS of zero-divisors. In fact, this group-algebra doesn’t have any good ringtheoretic properties except for the fact that it can be realized as a limit of finite groupalgebras (semi-simple algebras)

$\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] = \underset{\rightarrow}{lim}~\mathbb{Q}[\mathbb{Z}/n \mathbb{Z}] $

and hence is a quasi-free (or formally smooth) algebra, BUT far from being finitely generated…

the grading group $\mathbb{Q}^+_{\times} $

The multiplicative group of all positive rational numbers $\mathbb{Q}^+_{\times} $ is a torsion-free Abelian ordered group and it follows from the above defining relations that $\mathcal{H} $ is graded by this group if we give

$deg(Y_{\gamma})=1,~deg(X_m)=m,~deg(X_n^*) = \frac{1}{n} $

Now, graded algebras have been studied extensively in case the grading group is torsion-free abelian ordered AND finitely generated, HOWEVER $\mathbb{Q}^+_{\times} $ is infinitely generated and not much is known about such graded algebras. Still, the ordering should allow us to use some tricks such as taking leading coefficients etc.

the endomorphisms of $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $

We would like to view the equations (5) and (6) (the latter after multiplying both sides on the left with $X_n^* $ and using (1)) as saying that $X_n $ and $X_n^* $ are normalizing elements. Unfortunately, the algebra morphisms they induce on the group algebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ are NOT isomorphisms, BUT endomorphisms. One source of algebra morphisms on the group-algebra comes from group-morphisms from $\mathbb{Q}/\mathbb{Z} $ to itself. Now, it is known that

$Hom_{grp}(\mathbb{Q}/\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \simeq \hat{\mathbb{Z}} $, the profinite completion of $\mathbb{Z} $. A class of group-morphisms of interest to us are the maps given by multiplication by n on $\mathbb{Q}/\mathbb{Z} $. Observe that these maps are epimorphisms with a cyclic order n kernel. On the group-algebra level they give us the epimorphisms

$\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] \longrightarrow^{\phi_n} \mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ such that $\phi_n(Y_{\lambda}) = Y_{n \lambda} $ whence equation (5) can be rewritten as $Y_{\lambda} X_n = X_n \phi_n(Y_{\lambda}) $, which looks good until you think that $\phi_n $ is not an automorphism…

There are even other (non-unital) algebra endomorphisms such as the map $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] \rightarrow^{\psi_n} R_n $ defined by $\psi_n(Y_{\lambda}) = \frac{1}{n}(Y_{\frac{\lambda}{n}} + Y_{\frac{\lambda + 1}{n}} + \ldots + Y_{\frac{\lambda + n-1}{n}}) $ and then, we can rewrite equation (6) as $Y_{\lambda} X_n^* = X_n^* \psi_n(Y_{\lambda}) $, but again, note that $\psi_n $ is NOT an automorphism.

almost strongly graded, but not quite…

Recall from last time that the characteristic function $X_a $ for any double-coset-class $a \in \Gamma_0 \backslash \Gamma / \Gamma_0 $ represented by the matrix $a=\begin{bmatrix} 1 & \lambda \\ 0 & \frac{m}{n} \end{bmatrix} $ could be written in the Hecke algebra as $X_a = n X_m Y_{n \lambda} X_n^* = n Y_{\lambda} X_m X_n^* $. That is, we can write the Bost-Connes Hecke algebra as

$\mathcal{H} = \oplus_{\frac{m}{n} \in \mathbb{Q}^+_{\times}}~\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] X_mX_n^* $

Hence, if only the morphisms $\phi_n $ and $\psi_m $ would be automorphisms, this would say that $\mathcal{H} $ is a strongly $\mathbb{Q}^+_{\times} $-algebra with part of degree one the groupalgebra of $\mathbb{Q}/\mathbb{Z} $.

However, they are not. But there is an extension of the notion of strongly graded algebras which Fred has dubbed crystalline graded algebras in which it is sufficient that the algebra maps are all epimorphisms. (maybe I’ll post about these algebras, another time). However, this is not the case for the $\psi_m $…

So, what is the most elegant ringtheoretic framework in which the algebra $\mathcal{H} $ fits??? Surely, you can do better than generalized crystalline graded algebra

5 Comments

un-doing the Grothendieck?

(via the Arcadian Functor) At the time of the doing the Perelman-post someone rightfully commented that “making a voluntary retreat from the math circuit to preserve one’s own well-being (either mental, physical, scientific …)” should rather be called doing the Grothendieck as he was the first to pull this stunt.

On Facebook a couple of people have created the group The Petition for Alexander Grothendieck to Return from Exile. As you need to sign-up to Facebook to use this link and some of you may not be willing to do so, let me copy the description.

Alexander Grothendieck was born in Berlin, Germany on March 28, 1928. He was one of the most important and enigmatic mathematicians of the 20th century. After a lengthy and very productive career, highlighted by the awarding of the Fields Medal and the Crafoord Prize (the latter of which he declined), Grothendieck disappeared into the French countryside and ceased all mathematical activity. Grothendieck has lived in self-imposed exile since 1991.

We recently spotted Grothendieck in the “Gentleman’s Choice” bar in Montreal, Quebec. He was actually a really cool guy, and we spoke with him for quite some time. After a couple of rounds (on us) we were able to convince him to return from exile, under one stipulation – we created a facebook petition with 1729 mathematician members!

If 1729 mathematicians join this group, then Alexander Grothendieck will return from exile!!

1729 being of course the taxicab-curve number. The group posts convincing photographic evidence (see above) for their claim, has already 201 members (the last one being me) and has this breaking news-flash

Last week Grothendieck, or “the ‘Dieck” as we affectionately refer to him, returned to Montreal for a short visit to explain some of the theories he has been working on over the past decade. In particular, he explained how he has generalised the theory of schemes even further, to the extent that the Riemann Hypothesis and a Unified Field Theory are both trivial consequences of his work.

You know what to do!

2 Comments