Skip to content →

neverendingbooks Posts

Bost-Connes for ringtheorists

Over the last days I’ve been staring at the Bost-Connes algebra to find a ringtheoretic way into it. Ive had some chats about it with the resident graded-guru but all we came up with so far is that it seems to be an extension of Fred’s definition of a ‘crystalline’ graded algebra. Knowing that several excellent ringtheorists keep an eye on my stumblings here, let me launch an appeal for help :

What is the most elegant ringtheoretic framework in which the Bost-Connes Hecke algebra is a motivating example?

Let us review what we know so far and extend upon it with a couple of observations that may (or may not) be helpful to you. The algebra $\mathcal{H} $ is the algebra of $\mathbb{Q} $-valued functions (under the convolution product) on the double coset-space $\Gamma_0 \backslash \Gamma / \Gamma_0 $ where

$\Gamma = { \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix}~:~a,b \in \mathbb{Q}, a > 0 } $ and $\Gamma_0 = { \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}~:~n \in \mathbb{N}_+ } $

We have seen that a $\mathbb{Q} $-basis is given by the characteristic functions $X_{\gamma} $ (that is, such that $X_{\gamma}(\gamma’) = \delta_{\gamma,\gamma’} $) with $\gamma $ a rational point represented by the couple $~(a,b) $ (the entries in the matrix definition of a representant of $\gamma $ in $\Gamma $) lying in the fractal comb

defined by the rule that $b < \frac{1}{n} $ if $a = \frac{m}{n} $ with $m,n \in \mathbb{N}, (m,n)=1 $. Last time we have seen that the algebra $\mathcal{H} $ is generated as a $\mathbb{Q} $-algebra by the following elements (changing notation)

$\begin{cases}X_m=X_{\alpha_m} & \text{with } \alpha_m = \begin{bmatrix} 1 & 0 \\ 0 & m \end{bmatrix}~\forall m \in \mathbb{N}_+ \\
X_n^*=X_{\beta_n} & \text{with } \beta_n = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{n} \end{bmatrix}~\forall n \in \mathbb{N}_+ \\
Y_{\gamma} = X_{\gamma} & \text{with } \gamma = \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix}~\forall \lambda \in \mathbb{Q}/\mathbb{Z} \end{cases} $

Using the tricks of last time (that is, figuring out what functions convolution products represent, knowing all double-cosets) it is not too difficult to prove the defining relations among these generators to be the following (( if someone wants the details, tell me and I’ll include a ‘technical post’ or consult the Bost-Connes original paper but note that this scanned version needs 26.8Mb ))

(1) : $X_n^* X_n = 1, \forall n \in \mathbb{N}_+$

(2) : $X_n X_m = X_{nm}, \forall m,n \in \mathbb{N}_+$

(3) : $X_n X_m^* = X_m^* X_n, \text{whenever } (m,n)=1$

(4) : $Y_{\gamma} Y_{\mu} = Y_{\gamma+\mu}, \forall \gamma,mu \in \mathbb{Q}/\mathbb{Z}$

(5) : $Y_{\gamma}X_n = X_n Y_{n \gamma},~\forall n \in \mathbb{N}_+, \gamma \in \mathbb{Q}/\mathbb{Z}$

(6) : $X_n Y_{\lambda} X_n^* = \frac{1}{n} \sum_{n \delta = \gamma} Y_{\delta},~\forall n \in \mathbb{N}_+, \gamma \in \mathbb{Q}/\mathbb{Z}$

Simple as these equations may seem, they bring us into rather uncharted ringtheoretic territories. Here a few fairly obvious ringtheoretic ingredients of the Bost-Connes Hecke algebra $\mathcal{H} $

the group-algebra of $\mathbb{Q}/\mathbb{Z} $

The equations (4) can be rephrased by saying that the subalgebra generated by the $Y_{\gamma} $ is the rational groupalgebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ of the (additive) group $\mathbb{Q}/\mathbb{Z} $. Note however that $\mathbb{Q}/\mathbb{Z} $ is a torsion group (that is, for all $\gamma = \frac{m}{n} $ we have that $n.\gamma = (\gamma+\gamma+ \ldots + \gamma) = 0 $). Hence, the groupalgebra has LOTS of zero-divisors. In fact, this group-algebra doesn’t have any good ringtheoretic properties except for the fact that it can be realized as a limit of finite groupalgebras (semi-simple algebras)

$\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] = \underset{\rightarrow}{lim}~\mathbb{Q}[\mathbb{Z}/n \mathbb{Z}] $

and hence is a quasi-free (or formally smooth) algebra, BUT far from being finitely generated…

the grading group $\mathbb{Q}^+_{\times} $

The multiplicative group of all positive rational numbers $\mathbb{Q}^+_{\times} $ is a torsion-free Abelian ordered group and it follows from the above defining relations that $\mathcal{H} $ is graded by this group if we give

$deg(Y_{\gamma})=1,~deg(X_m)=m,~deg(X_n^*) = \frac{1}{n} $

Now, graded algebras have been studied extensively in case the grading group is torsion-free abelian ordered AND finitely generated, HOWEVER $\mathbb{Q}^+_{\times} $ is infinitely generated and not much is known about such graded algebras. Still, the ordering should allow us to use some tricks such as taking leading coefficients etc.

the endomorphisms of $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $

We would like to view the equations (5) and (6) (the latter after multiplying both sides on the left with $X_n^* $ and using (1)) as saying that $X_n $ and $X_n^* $ are normalizing elements. Unfortunately, the algebra morphisms they induce on the group algebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ are NOT isomorphisms, BUT endomorphisms. One source of algebra morphisms on the group-algebra comes from group-morphisms from $\mathbb{Q}/\mathbb{Z} $ to itself. Now, it is known that

$Hom_{grp}(\mathbb{Q}/\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \simeq \hat{\mathbb{Z}} $, the profinite completion of $\mathbb{Z} $. A class of group-morphisms of interest to us are the maps given by multiplication by n on $\mathbb{Q}/\mathbb{Z} $. Observe that these maps are epimorphisms with a cyclic order n kernel. On the group-algebra level they give us the epimorphisms

$\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] \longrightarrow^{\phi_n} \mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ such that $\phi_n(Y_{\lambda}) = Y_{n \lambda} $ whence equation (5) can be rewritten as $Y_{\lambda} X_n = X_n \phi_n(Y_{\lambda}) $, which looks good until you think that $\phi_n $ is not an automorphism…

There are even other (non-unital) algebra endomorphisms such as the map $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] \rightarrow^{\psi_n} R_n $ defined by $\psi_n(Y_{\lambda}) = \frac{1}{n}(Y_{\frac{\lambda}{n}} + Y_{\frac{\lambda + 1}{n}} + \ldots + Y_{\frac{\lambda + n-1}{n}}) $ and then, we can rewrite equation (6) as $Y_{\lambda} X_n^* = X_n^* \psi_n(Y_{\lambda}) $, but again, note that $\psi_n $ is NOT an automorphism.

almost strongly graded, but not quite…

Recall from last time that the characteristic function $X_a $ for any double-coset-class $a \in \Gamma_0 \backslash \Gamma / \Gamma_0 $ represented by the matrix $a=\begin{bmatrix} 1 & \lambda \\ 0 & \frac{m}{n} \end{bmatrix} $ could be written in the Hecke algebra as $X_a = n X_m Y_{n \lambda} X_n^* = n Y_{\lambda} X_m X_n^* $. That is, we can write the Bost-Connes Hecke algebra as

$\mathcal{H} = \oplus_{\frac{m}{n} \in \mathbb{Q}^+_{\times}}~\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] X_mX_n^* $

Hence, if only the morphisms $\phi_n $ and $\psi_m $ would be automorphisms, this would say that $\mathcal{H} $ is a strongly $\mathbb{Q}^+_{\times} $-algebra with part of degree one the groupalgebra of $\mathbb{Q}/\mathbb{Z} $.

However, they are not. But there is an extension of the notion of strongly graded algebras which Fred has dubbed crystalline graded algebras in which it is sufficient that the algebra maps are all epimorphisms. (maybe I’ll post about these algebras, another time). However, this is not the case for the $\psi_m $…

So, what is the most elegant ringtheoretic framework in which the algebra $\mathcal{H} $ fits??? Surely, you can do better than generalized crystalline graded algebra

5 Comments

un-doing the Grothendieck?

(via the Arcadian Functor) At the time of the doing the Perelman-post someone rightfully commented that “making a voluntary retreat from the math circuit to preserve one’s own well-being (either mental, physical, scientific …)” should rather be called doing the Grothendieck as he was the first to pull this stunt.

On Facebook a couple of people have created the group The Petition for Alexander Grothendieck to Return from Exile. As you need to sign-up to Facebook to use this link and some of you may not be willing to do so, let me copy the description.

Alexander Grothendieck was born in Berlin, Germany on March 28, 1928. He was one of the most important and enigmatic mathematicians of the 20th century. After a lengthy and very productive career, highlighted by the awarding of the Fields Medal and the Crafoord Prize (the latter of which he declined), Grothendieck disappeared into the French countryside and ceased all mathematical activity. Grothendieck has lived in self-imposed exile since 1991.

We recently spotted Grothendieck in the “Gentleman’s Choice” bar in Montreal, Quebec. He was actually a really cool guy, and we spoke with him for quite some time. After a couple of rounds (on us) we were able to convince him to return from exile, under one stipulation – we created a facebook petition with 1729 mathematician members!

If 1729 mathematicians join this group, then Alexander Grothendieck will return from exile!!

1729 being of course the taxicab-curve number. The group posts convincing photographic evidence (see above) for their claim, has already 201 members (the last one being me) and has this breaking news-flash

Last week Grothendieck, or “the ‘Dieck” as we affectionately refer to him, returned to Montreal for a short visit to explain some of the theories he has been working on over the past decade. In particular, he explained how he has generalised the theory of schemes even further, to the extent that the Riemann Hypothesis and a Unified Field Theory are both trivial consequences of his work.

You know what to do!

2 Comments

please, use this bookmarklet!

Great! You’ve finally managed to arXiv your paper after months of laborious research, and now, you’re eagerly awaiting response…

The odds are you’ll be disappointed, if not frustrated. Chances are high that if you get any response at all it is only to clarify that someone else (usually the person emailing you) proved this result a long time ago, or that your result could be generalized enormously, or that you could have shortened your proof tremendously if only you were more educated, or …
Mathematics seems to be more of a pissing contest than anything else, at such moments.

Imagine someone would be kind enough, at that particular moment, to send you an email saying not much more than : “Gee thanks! Ive just browsed through your paper arXived today and you really made my day! Keep up the good work, all the best :: lieven” (change the name to your liking)

Sadly, math-circles are not known for their ‘good-vibes’ generally. Mind you, Ive send similar emails to people posting on the arXiv, but, admittedly, I did it far fewer than I might have. Often I like (even admire) a result but repress the urgent need to communicate that feeling to the author, perhaps my Asperger kicking up…

Now that you may feel some empathy with the situation, let’s get to a similar situation in math-blogging. Sometimes, you spend a lot of time writing a post (( but probably you have to be blogging yourself to appreciate the amount of energy it takes to write a genuine post compared to a link-post or a couple-of-lines-not-going-into-the-specifics post )) , release it to the world, see tons of RSS-bots and genuine hits passing by and then what?… nothing! no reply, no email, no comment, nothing at all!

Personally, I’m not that influenced by this. When I blog I do it because (1) Ive the time, at that particular moment and (2) I like to write about the things I do, at that moment. But sometimes, it comes to us all, that feeling of ‘why am I doing this after all? can’t I spend my time more sensibly doing something else?’ and when you begin to have these doubts it usually marks the beginning of a long silence at your blog (( browse my archive and I can tell you specifically what happened at that particular moment to stop blogging ))

So, here’s an appeal to all you lurkers at math-blogs : give these people, once in a while, something back…. Ive thought for a long time that this lurk-but-no-comment attitude was something typical of mathematicians, but, as often, when researched in more depth, I have to admit that I’m wrong! Read the post Participation Inequality: Encouraging More Users to Contribute by Jakob Nielsen to find out that most blogs act along a 90-9-1 scheme :

User participation often more or less follows a 90-9-1 rule:

90% of users are lurkers (i.e., read or observe, but don’t contribute).
9% of users contribute from time to time, but other priorities dominate their time.
1% of users participate a lot and account for most contributions: it can seem as if they don’t have lives because they often post just minutes after whatever event they’re commenting on occurs.

So, the good news is, it’s not that particular to us autistic mathematicians. But, wouldn’t it be even better if you could do something positive about it? Speaking for myself : often I read a post I like, and (being a semi-pro myself) appreciate the work had to be put into producing such a post, but even then I don’t feel the urge to communicate this positive feeling to the blogger in question. Perhaps, we could accelerate things by having a bookmarklet in your bookmarks-bar that does the following : when you like a post, go to the post-page where you are asked to leave a comment. Hit the bookmarklet and it will automatically fill in your name, URL, email adress and a supporting message along the lines of “Nice post! I’m not so much of a commenter, but rather than not replying at all, I found it important to let you know that people actually read and like your post. All the best (and perhaps later I’ll comment more to the point) :: lieven (again, change the name to your liking).

Well, I’ve just done that! So please take a few minutes off your time to read and follow-up the instructions below and have a math-blog-bookmarklet up in your bookmark-bar to tell the blogger in question you really liked her/his post. This may just be enough motivation for them to carry on…

Okay! Here the nitty-gritty (it takes under 2 minutes, so please, do it now!).

part 1 : copy the following text and save it as blogmarklet.html

  • Download mathblogmarklet.txt and save it into your favorite text-program as bookmarklet.html and change your URL, name, email and custom message (please extend on your compliments…)

  • Once you saved the file as bookmarklet.html open the file under your favourite browser (Safari or Flock) and drag the link to your bookmark-bar.

part 2 : use it!

  • Whenever you visit a blog-post you like, go to the page of that post where you can leave a comment. Hit the bookmarklet and your comment-fields are filled (but PLEASE ADD TO THE DEFAULT COMMENT IF YOU FEEL LIKE IT) and press the submit-button!

  • That’s it!

For example, Ive just changed the layout of this blog. Please leave a specific comment what you think about it.

14 Comments