Skip to content →

neverendingbooks Posts

Archimedes’ stomachion

The Archimedes codex is a good read, especially when you are (like me) a failed archeologist. The palimpsest (Greek for ‘scraped again’) is the worlds first Kyoto-approved ‘sustainable writing’. Isn’t it great to realize that one of the few surviving texts by Archimedes only made it because some monks recycled an old medieval parchment by scraping off most of the text, cutting the pages in half, rebinding them and writing a song-book on them…

The Archimedes-text is barely visible as vertical lines running through the song-lyrics. There is a great website telling the story in all its detail.

Contrary to what the books claims I don’t think we will have to rewrite maths history. Didn’t we already know that the Greek were able to compute areas and volumes by approximating them with polygons resp. polytopes? Of course one might view this as a precursor to integral calculus… And then the claim that Archimedes invented ordinal calculus. Sure the Greek knew that there were ‘as many’ even integers than integers… No, for me the major surprise was their theory about the genesis of mathematical notation.

The Greek were pure ASCII mathematicians : they wrote their proofs out in full text. Now, here’s an interesting theory how symbols got into maths… pure laziness of the medieval monks transcribing the old works! Copying a text was a dull undertaking so instead of repeating ‘has the same ratio as’ for the 1001th time, these monks introduced abbreviations like $\Sigma $ instead… and from then on things got slightly out of hand.

Another great chapter is on the stomachion, perhaps the oldest mathematical puzzle. Just a few pages made in into the palimpsest so we do not really know what (if anything) Archimedes had to say about it, but the conjecture is that he was after the number of different ways one could make a square with the following 14 pieces

People used computers to show that the total number is $17152=2^8 \times 67 $. The 2-power is hardly surprising in view of symmetries of the square (giving $8 $) and the fact that one can flip one of the two vertical or diagonal parts in the alternative description of the square

but I sure would like to know where the factor 67 is coming from… The MAA and UCSD have some good pages related to the stomachion puzzle. Finally, the book also views the problema bovinum as an authentic Archimedes, so maybe I should stick to my promise to blog about it, after all…

One Comment

i’ll take rerun requests

If you write a comment-provoking post (such as that one), you’d better deal with the reactions.

As often, the bluntest comment came from the Granada-Antwerp commuter (aka “mewt” for ‘memories of a weird traveler’…)

Javier :

Concerning the participation on the math-related posts, it is true that what you write has become more readable along the years, but yet, being able to read one of your math posts and catch the idea of what is going on (which I think is a great thing to do) is one thing. Actually understanding the details is a completely different one. And possibly most people thinks that commenting around when you only got the general idea (if any) of some math topic would be rather bold.

Personally, with your 2 last posts concerning Connes-Bost systems I am interested on understanding the story in full detail, so I printed your first post, took it home, read it carefully, made all the computations on my own (not that I dont trust yours, but you never know!) and before I had finished getting a sound impression of what was going on, the second part was already online, so had to go through the same process (in top of usual duties) just to keep your rythm. If things go as usual, by the time I am ready to make any sensible comments, you’ll be already bored of the topic and have switched to something else, so it won’t make much sense commenting at all!If its comments what you’re lasting for, write short, one-idea posts, rather than long, technically detailed ones.

The good news is that my posts become slightly more understandable. But all things can be improved… so, here’s a request :

If there is this one post you’d love to understand if only you knew already the material I subconsciously assumed, tell me or leave a comment!

and I’ll try to improve on it…

Leave a Comment

Oxen of the Sun

The Oxen of the Sun (of the Problema Bovinum) is one of the most difficult chapters in Joyce’s Ulysses. Ulysses is the 1904 version of Homer’s Odyssey so the Oxen appear also in his Book XII :

And thou wilt come to the isle Thrinacia. There in great numbers feed the kine [cattle] of Helios and his goodly flocks, seven herds of kine and as many fair flocks of sheep, and fifty in each.

Homer must have suffered from an acute form of innumeracy as the minimal solution to the cattle problem gives as the total number the smallest integer greater than

$\frac{25194541}{184119152} (109931986732829734979866232821433543901088049+ $

$50549485234315033074477819735540408986340
\sqrt{4729494})^{4658} $

a number whose actual digits take up 47 pages, one of the most useless pieces of mathematical wall-paper!

Leave a Comment