Skip to content →

neverendingbooks Posts

Return to LaTeX

To most mathematicians, a good LaTeX-frontend (such as TeXShop for Mac-users) is the crucial tool to get the work done. We use it to draft ideas, write papers and courses, or even to take notes during lectures.

However, after six years of blogging, my own LaTeX-routine became rusty. I rarely open a new tex-document, and when I do, I’d rather copy-paste the long preamble from an old file than to start from scratch with a minimal list of packages and definitions needed for the job at hand. The few times I put a paper on the arXiv, the resulting text resembles a blog-post more than a mathematical paper, here’s an example.

As I desperately need to get some math-writing done, I need to pull myself away from the lure of an ever-open WordPress admin browser-screen and reacquaint myself with the far more efficient LaTeX-environment.

Perhaps even my blogging will benefit from the change. Whereas I used to keep on adding to most of my tex-files in order to keep them up-to-date, I rarely edit a blog-post after hitting the ’publish’ button. If I really want to turn some of my better posts into a book, I need them in a format suitable for neverending polishing, without annoying the many RSS-feed aggregators out there.

Who better than Terry Tao to teach me a more proficient way of blogging? A few days ago, Terry announced he will soon have his 5th (!!) book out, after three years of blogging…

How does he manage to do this? Well, as far as I know, Terry blogs in LaTeX and then uses a python-script called LaTeX2WP ’a program that converts a LaTeX file into something that is ready to be cut and pasted into WordPress. This way, you can write, and preview, your post in LaTeX, then run LaTeX2WP, and post into WordPress whatever comes out.’ More importantly, one retains a pure-tex-file of the post on which one can keep on editing to get it into a (book)-publishable form, eventually.

Nice, but one can do even better, as Eric from Curious Reasoning worked out. He suggests to install two useful python-packages : WordPressLib “with this library you can control remotely a WordPress installation. Use of library is very simple, you can write a small scripts or full applications that allows you to automate publishing of articles on your blog/site powered by WordPress” and plasTeX “plasTeX is a LaTeX document processing framework written entirely in Python. It currently comes bundled with an XHTML renderer (including multiple themes), as well as a way to simply dump the document to a generic form of XML”. Installation is easy : download and extract the files somewhere, go there and issue a **sudo python setup.py install** to add the packages to your python.

Finally, get Eric’s own wplatex package and install it as explained there. WpLaTeX has all the features of LaTeX2WP and much more : one can add titles, tags and categories automatically and publish the post from the command-line without ever having to enter the taboo WordPress-admin page! Here’s what I’ve written by now in TeXShop

I’ve added the screenshot and the script will know where to find it online for the blog-version as well as on my hard-disk for the tex-version. Very handy is the iftex … fi versus ifblog … fi alternative which allows you to add pure HTML to get the desired effect, when needed. Remains only to go into Terminal and issue the command

wplpost -x http://www.neverendingbooks.org/xmlrpc.php ReturnToLatex.tex

(if your blog is on WordPress.com it even suffices to give its name, rather than this work-around for stand-alone wordpress blogs). The script asks for my username and password and will convert the tex-file and post it automatic.

5 Comments

Where’s Bourbaki’s Escorial?

Early 1936, Andre Weil and Evelyne Gillet made a pre-honeymooning trip to Spain and visited El Escorial. Weil was so taken by the place that he planned the next Bourbaki-conference to be held in a nearby college. However, the Bourbakis never made it to to Spain that summer as the Spanish Civil War broke out July 17th, a few weeks before the intended conference. Can we GEO-tag the exact location of Bourbaki’s “Escorial”?

As explained in the bumpy-road-post, Andre Weil and Evelyne Gillet became involved sometime in 1935.
Early 1936, they made a pre-honeymooning trip to Spain and visited El Escorial. Weil was so taken by the place that he planned the next Bourbaki-conference to be held in a nearby college.

However, the Bourbakis never made it to to Spain that summer as the Spanish Civil War broke out July 17th, a few weeks before the intended conference. Still, the second Bourbaki-meeting remains often referred to as the ‘Escorial conference’. Can we GEO-tag the exact location of Bourbaki’s “Escorial”?

Claude Chevalley came up with a Plan-B and suggested they would use his parents’ place in Chançay as their venue. Chevalley’s father was a French diplomat and his house sure did possess a matching ‘grandeur’ as can be seen from the famous picture below, taken at the (second) Chançay meeting in 1937 (Weil to the left, Chevalley to the right and Weil’s sister Simonne standing).



Thanks to the Bourbaki archives we know that the meeting took place from september 16th to 28th, that each of them had to pay 16 francs for full pension and had to bring along their own sheets and towels.



But where exactly is this beautiful house? Jacques Borowczyk has written a nice paper Bourbaki et la touraine in which he describes the Bourbaki congresses of 1936 and 1937 at the Chevalley-house in Chançay and further those held in 1956, 1957 and 1959 in ‘hôtel de la Brèche’ in Amboise.

Borowczyk places the Chevalley house in the little hamlet of Chançay, called “La Massoterie”. The village files assert that in 1931 three people were living at La Massoterie : father Abel Chevalley, who took residence there after his retirement in 1931, his wife Marguerite and their son Claude. But, at the time of the Bourbaki congres in 1936, Marguerite remained the only permanent inhabitant. Sadly,
Abel Chevalley, who together with Marguerite compiled the The concise Oxford French dictionary, died in 1934.

Usually when you know the name of the hamlet, of the village and add just to be certain ‘France’, Google Maps takes you there within metres. So, this was going to be a quick post, for a change… Well, much to my surprise, typing ‘La Massoterie, Chançay, France’ only produced the answer “We could not understand the location La Massoterie, Chançay, France”.

Did I spell it wrong? Or, did the name change over times? No, Googling for it the first hit gives you the map of a 10km walk around Chançay passing through la Massoterie!

Now what? Fortunately Borowczyk included in his paper an old map, from Napoleonic times, showing the exact location of La Massoterie (just above the flash-sign), facing the castle of Volmer. If you compare it with the picture below from present day Chançay (via Google earth) it is surprising how many of the landmarks have survived the changes over two centuries.





It is now easy to pinpoint the exact location and zoom into the Chavalley-house, and, you’re in for a small surprise : the place is called La Massotterie with 2 t’s…

Probably, Googles database is more reliable than the information provided by the village of Chançay, or the paper by Borowczyk as it is the same spelling as on the old Napoleonic map. Anyway, feel free to have a peek at Bourbaki’s Escorial yourself!

2 Comments

Lambda-rings for formula-phobics

In 1956, Alexander Grothendieck (middle) introduced $\lambda $-rings in an algebraic-geometric context to be commutative rings A equipped with a bunch of operations $\lambda^i $ (for all numbers $i \in \mathbb{N}_+ $) satisfying a list of rather obscure identities. From the easier ones, such as

$\lambda^0(x)=1, \lambda^1(x)=x, \lambda^n(x+y) = \sum_i \lambda^i(x) \lambda^{n-i}(y) $

to those expressing $\lambda^n(x.y) $ and $\lambda^m(\lambda^n(x)) $ via specific universal polynomials. An attempt to capture the essence of $\lambda $-rings without formulas?

Lenstra’s elegant construction of the 1-power series rings $~(\Lambda(A),\oplus,\otimes) $ requires only one identity to remember

$~(1-at)^{-1} \otimes (1-bt)^{-1} = (1-abt)^{-1} $.

Still, one can use it to show the existence of ringmorphisms $\gamma_n~:~\Lambda(A) \rightarrow A $, for all numbers $n \in \mathbb{N}_+ $. Consider the formal ‘logarithmic derivative’

$\gamma = \frac{t u(t)’}{u(t)} = \sum_{i=1}^\infty \gamma_i(u(t))t^i~:~\Lambda(A) \rightarrow A[[t]] $

where $u(t)’ $ is the usual formal derivative of a power series. As this derivative satisfies the chain rule, we have

$\gamma(u(t) \oplus v(t)) = \frac{t (u(t)v(t))’}{u(t)v(t)} = \frac{t(u(t)’v(t)+u(t)v(t)’}{u(t)v(t))} = \frac{tu(t)’}{u(t)} + \frac{tv(t)’}{v(t)} = \gamma(u(t)) + \gamma(v(t)) $

and so all the maps $\gamma_n~:~\Lambda(A) \rightarrow A $ are additive. To show that they are also multiplicative, it suffices by functoriality to verify this on the special 1-series $~(1-at)^{-1} $ for all $a \in A $. But,

$\gamma((1-at)^{-1}) = \frac{t \frac{a}{(1-at)^2}}{(1-at)} = \frac{at}{(1-at)} = at + a^2t^2 + a^3t^3+\ldots $

That is, $\gamma_n((1-at)^{-1}) = a^n $ and Lenstra’s identity implies that $\gamma_n $ is indeed multiplicative! A first attempt :

hassle-free definition 1 : a commutative ring $A $ is a $\lambda $-ring if and only if there is a ringmorphism $s_A~:~A \rightarrow \Lambda(A) $ splitting $\gamma_1 $, that is, such that $\gamma_1 \circ s_A = id_A $.

In particular, a $\lambda $-ring comes equipped with a multiplicative set of ring-endomorphisms $s_n = \gamma_n \circ s_A~:~A \rightarrow A $ satisfying $s_m \circ s_m = s_{mn} $. One can then define a $\lambda $-ringmorphism to be a ringmorphism commuting with these endo-morphisms.

The motivation being that $\lambda $-rings are known to form a subcategory of commutative rings for which the 1-power series functor is the right adjoint to the functor forgetting the $\lambda $-structure. In particular, if $A $ is a $\lambda $-ring, we have a ringmorphism $A \rightarrow \Lambda(A) $ corresponding to the identity morphism.

But then, what is the connection to the usual one involving all the operations $\lambda^i $? Well, one ought to recover those from $s_A(a) = (1-\lambda^1(a)t+\lambda^2(a)t^2-\lambda^3(a)t^3+…)^{-1} $.

For $s_A $ to be a ringmorphism will require identities among the $\lambda^i $. I hope an expert will correct me on this one, but I’d guess we won’t yet obtain all identities required. By the very definition of an adjoint we must have that $s_A $ is a morphism of $\lambda $-rings, and, this would require defining a $\lambda $-ring structure on $\Lambda(A) $, that is a ringmorphism $s_{AH}~:~\Lambda(A) \rightarrow \Lambda(\Lambda(A)) $, the so called Artin-Hasse exponential, to which I’d like to return later.

For now, we can define a multiplicative set of ring-endomorphisms $f_n~:~\Lambda(A) \rightarrow \Lambda(A) $ from requiring that $f_n((1-at)^{-1}) = (1-a^nt)^{-1} $ for all $a \in A $. Another try?

hassle-free definition 2 : $A $ is a $\lambda $-ring if and only if there is splitting $s_A $ to $\gamma_1 $ satisfying the compatibility relations $f_n \circ s_A = s_A \circ s_n $.

But even then, checking that a map $s_A~:~A \rightarrow \Lambda(A) $ is a ringmorphism is as hard as verifying the lists of identities among the $\lambda^i $. Fortunately, we get such a ringmorphism for free in the important case when A is of ‘characteristic zero’, that is, has no additive torsion. Then, a ringmorphism $A \rightarrow \Lambda(A) $ exists whenever we have a multiplicative set of ring endomorphisms $F_n~:~A \rightarrow A $ for all $n \in \mathbb{N}_+ $ such that for every prime number $p $ the morphism $F_p $ is a lift of the Frobenius, that is, $F_p(a) \in a^p + pA $.

Perhaps this captures the essence of $\lambda $-rings best (without the risk of getting an headache) : in characteristic zero, they are the (commutative) rings having a multiplicative set of endomorphisms, generated by lifts of the Frobenius maps.

2 Comments