my mother died this afternoon. everything else is irrelevant.
lieven.
Leave a CommentPublished September 17, 2004 by lievenlb
Published September 15, 2004 by lievenlb
I've been here before! I mean, I did try to set up
non-commutative algebra&geometry sites before and sooner or later
they always face the same basic problems :
a :
dyspnoea : one person does not have enough fresh ideas
to keep a mathematical site updated daily so that it continues to be of
interest (at least, I'm not one of those who can).
b :
claustrophobia : the topic of non-commutative algebra
& non-commutative geometry is too wide to be covered (cornered) by
one person. More (and differing) views are needed for balance and
continued interest.
c : paranoia : if one is
not entirely naive one has to exercise some restraint trying to protect
ones research plans (or those of students) so the most interesting ideas
never even get posted!
By definition, I cannot solve problems
a) and b) on my own. All I can hope is that, now that the basic
technological problems (such as including LaTeX-code in posts) are
solved, other people are willing to contribute. For this reason I
'depersonalized' this blog : I changed the title, removed all
personal links in the sidebar and so on. I want to open up this site
(but as I said, I've tried this before without much success) to
anyone working in non-commutative algebra and/or non-commutative
geometry who is willing to contribute posts on at least a monthly basis
(or fortnightly, weekly, daily…) for the foreseeable future. At
the moment the following 'categories' of posts are available
(others can be added on request) :
Mind you,
I am not looking for people who seek a forum to post
their questions (such people can still add questions as comments to
related posts) but rather for people active in na&g with a personal
opinion on relevance and future of the topic.
If you are
interested in contributing, please email me and we will work
something out. I'll also post information for authors (such as, how
to include tex, how to set restrictions etc.) in a _sticky_ post
soon.
Now, problem c) : in running sites for our master class
on noncommutative geometry I've noticed that some people are more
willing to post lectures notes etc. if they know that there is some
control on who can download their material. For this reason there will
be viewing restrictions on certain posts. Such posts will get a
padlock-sign next to them in the 'recent posts' sidebar (they
will not show up in your main page, if you are not authorized to see
them). I will add another sticky on all of this soon. For now, if you
would only be willing to contribute if there was this safeguard, rest
assured, it will be there soon. All others can of course already sign-up
or wait whether any of these plans (resp. day-dreams) ever work
out….
update (febr 2007) : still waiting
but the padlock idea is abandoned.
Published September 10, 2004 by lievenlb
PseudonomousDaughterTwo learned vector-addition at school and
important formulas such as the _Chasles-Moebius_ equation
$\forall A,B,C \in \mathbb{R}^2~:~\vec{AB}+\vec{BC} = \vec{AC} $
Last evening I helped her a bit with her homework and there was one
problem she could not do immediately (but it was a starred exercise so
you didn't have to do it, but…) :
consider a regular pentagon
with center $\vec{0} $. Prove that
$\vec{0A} + \vec{0B} +
\vec{0C} + \vec{0D} + \vec{0E} = \vec{0} $
PD2 : How would
_you_ do this? (with a tone like : I bet even you can't do
it)
Me : Symmetry!
PD2 : Huh?
Me : Rotate the plane
1/5 turn, then $A \mapsto B $, $B \mapsto C $ and so on. So the vector
giving the sum of all five terms must be mapped to itself under this
rotation and the only vector doing this is the zero vector.
PD2 :
That cannot be the solution, you didn't take sums of vectors and all
other exercises did that.
Me : I don't care, it is an elegant
solution, you don't have to compute a thing!
But clearly
she was not convinced and I had to admit there was nothing in her
textbook preparing her for such an argument. I was about to explain that
there was even more symmetry : reflecting along a line through a vertex
giving dihedral symmetry when I saw what the _intended solution_
of the exercise was :
Me : Okay, if you _have_ to do
sums let us try this. Fix a vertex, say A. Then the sum
$\vec{0E}+\vec{0B} $ must lie on the line 0A by the parallellogram-rule
(always good to drop in a word from the textbook to gain some
trust…), similarly the sum $\vec{0C}+\vec{0D} $ must lie on the
line 0A. So you now have to do a sum of three vectors lying on the
line 0A so the result must lie on 0A
PD2 : Yes, and???
Me : But there was nothing special about $A$. I could have started with
B and do the whole argument all over again and then I would get that
the sum is a vector on the line 0B
PD2 : And the only vector
lying on both 0A and 0B is $\vec{0} $
Me : Right! But
all we did now was just redoing the symmetry argument because the line
0A is mapped to 0B
PD2 : Don't you get started on
_that symmetry_ again!
I wonder which of the two
solutions she will sell today as her own. I would love to see the face
of a teacher when a 15yr old says “Clearly that is trivial because
the zero vector is the only one left invariant under
pentagon-symmetry!”