Skip to content →

Category: stories

non-geometry

Here’s
an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name
change.

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
paper
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost
commutative…

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the
form

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more
details).

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment

writing with gloves on

Okay, let’s have it out in the open :

I’m officially diagnosed as being depressed by both PD1 and PD2!

Coming from the two top experience-experts on my mood swings, I’d better take this
seriously. So, do they come up with an explanation for this ‘depression’?

PD1 blames it on the celebrated mid-life-crisis which in her world is merely the generic phrase uttered when a parent does something ‘odd’.

If thePartner wants to spend some time among old friends, or wants to get involved in community work, it’s called ‘mid-life crisis’.

When both of us join a demonstration for the first time in over a decade, it’s MLC etc. etc.

In recent years I heard her say the MLC- phrase often enough referring to her friends’ parents and thePartner but somehow I always got away, until recently…

PD2 blames it on my turning 48 last week, a fact I cannot deny but then, what’s so special about 48? I don’t get it.

Feeble as their explanations may be, they still may have a point. Sure, some losses do affect me. Some recent, some imminent, some unfortunately permanent, some hopefully temporary…

I realise this is a bit cryptic to the uninitiated, but then I’ve given up writing about personal stuff a long time ago (to the dismay of PD2 who would welcome more web-presence when self-googling…).

But wait… Hey, that may be part of the problem :

I’ve given up writing about so many things recently that there’s hardly anything sufficiently interesting left to write about.

In the post-Dutroux scare I did remove all pictures and references to our daughters from my web-pages, for you don’t want to know the weirdos that have a look at it and you definitely do not want to think about what they might do when they obtain my address from the university web-page….

Surely a valid point. So, away with all writing about personal stuff.

Then, more recently (and I hope at least some of you noticed it…) I’ve imposed a ban on critical postings about people or events going on in noncommutative algebra/geometry. The reason behind this decision is personal, so if I didnt tell you in private you’ll never find it here.

Speaking about this with Paul Smith at the last Oberwolfach, he had an hilarious reply.

“I wouldn’t say you were critical. I’d say you are sometimes pretty intense and I love it, as long as I’m not on the receiving end…”

But see, that’s just the problem. Mathematicians are so vane that there is always someone who feels to be on the receiving end!

Let’s say, hypothetically speaking, that I write a somewhat critical post about the ongoing cluster-algebra hype, we all know some people who will not like it. Ditto about (again hypothetically…) symplectic-reflection algebras, ditto about etc. etc.

Compare this with the entertaining about-life-or-death fights going on in physics-blogs. If you don’t know what I’m talking about and want to have a good laugh, have a go at the comments to this Not Even Wrong Post.

Possibly, I should come to terms with the fact that blogging is an activity which will never be tolerated by the autism-enriched environment of mathematicians and that I should just give it up.

Or, perhaps, I should regain my writing-freedom and blog about whatever I feel strongly about at that particular moment in time (and remember, I do suffer from violent mood-swings so these opinions may change overnight…), be it critical or if you want ‘intense’, and hope that not too many will think they are on the receiving end…

I realize that I will sometimes be accused of ‘jealousy’, sometimes of being ‘frustrated’. But, let’s face it : bottling up one’s frustrations, that’s precisely the thing that leads to a genuine depression…

Leave a Comment

symmetry and the monster

Mark
Ronan
has written a beautiful book intended for the general public
on Symmetry and the Monster. The
book’s main theme is the classification of the finite simple groups. It
starts off with the introduction of groups by Galois, gives the
classifivcation of the finite Lie groups, the Feit-Thompson theorem and
the construction of several of the sporadic groups (including the
Mathieu groups, the Fischer and Conway groups and clearly the
(Baby)Monster), explains the Leech lattice and the Monstrous Moonshine
conjectures and ends with Richard Borcherds proof of them using vertex
operator algebras. As in the case of Music of the
Primes
it is (too) easy to be critical about notation. For example,
whereas groups are just called symmetry groups, I don’t see the point of
calling simple groups ‘atoms of symmetry’. But, unlike du Sautoy,
Mark Ronan stays close to mathematical notation, lattices are just
lattices, characer-tables are just that, j-function is what it is etc.
And even when he simplifies established teminology, for example
‘cyclic arithmetic’ for modular arithmetic, ‘cross-section’
for involution centralizer, ‘mini j-functions’ for Hauptmoduln
etc. there are footnotes (as well as a glossary) mentioning the genuine
terms. Group theory is a topic with several colourful people
including the three Johns John Leech, John
McKay
and John Conway
and several of the historical accounts in the book are a good read. For
example, I’ve never known that the three Conway groups were essentially
discovered in just one afternoon and a few telephone exchanges between
Thompson and Conway. This year I’ve tried to explain some of
monstrous moonshine to an exceptionally good second year of
undergraduates but failed miserably. Whereas I somehow managed to give
the construction and proof of simplicity of Mathieu 24, elliptic and
modular functions were way too difficult for them. Perhaps I’ll give it
another (downkeyed) try using ‘Symmetry and the Monster’ as
reading material. Let’s hope Oxford University Press will soon release a
paperback (and cheaper) version.

Leave a Comment