Skip to content →

Category: stories

Grothendieck stuff

January 13th, Gallimard published Grothendieck’s text Recoltes et Semailles in a fancy box containing two books.



Here’s a G-translation of Gallimard’s blurb:

“Considered the mathematical genius of the second half of the 20th century, Alexandre Grothendieck is the author of Récoltes et semailles, a kind of “monster” of more than a thousand pages, according to his own words. The mythical typescript, which opens with a sharp criticism of the ethics of mathematicians, will take the reader into the intimate territories of a spiritual experience after having initiated him into radical ecology.

In this literary braid, several stories intertwine, “a journey to discover a past; a meditation on existence; a picture of the mores of a milieu and an era (or the picture of the insidious and implacable shift from one era to another…); an investigation (almost police at times, and at others bordering on the swashbuckling novel in the depths of the mathematical megapolis…); a vast mathematical digression (which will sow more than one…); […] a diary ; a psychology of discovery and creation; an indictment (ruthless, as it should be…), even a settling of accounts in “the beautiful mathematical world” (and without giving gifts…)”.”

All literary events, great or small, are cause for the French to fill a radio show.

January 21st, ‘Le grand entretien’ on France Inter invited Cedric Villani and Jean-Pierre Bourguignon to talk about Grothendieck’s influence on mathematics (h/t Isar Stubbe).

The embedded YouTube above starts at 12:06, when Bourguignon describes Grothendieck’s main achievements.

Clearly, he starts off with the notion of schemes which, he says, proved to be decisive in the further development of algebraic geometry. Five years ago, I guess he would have continued mentioning FLT and other striking results, impossible to prove without scheme theory.

Now, he goes on saying that Grothendieck laid the basis of topos theory (“to define it, I would need not one minute and a half but a year and a half”), which is only now showing its first applications.

Grothendieck, Bourguignon goes on, was the first to envision the true potential of this theory, which we should take very seriously according to people like Lafforgue and Connes, and which will have applications in fields far from algebraic geometry.

Topos20 is spreading rapidly among French mathematicians. We’ll have to await further results before Topos20 will become a pandemic.

Another interesting fragment starts at 16:19 and concerns Grothendieck’s gribouillis, the 50.000 pages of scribblings found in Lasserre after his death.

Bourguignon had the opportunity to see them some time ago, and when asked to describe them he tells they are in ‘caisses’ stacked in a ‘libraire’.

Here’s a picture of these crates taken by Leila Schneps in Lasserre around the time of Grothendieck’s funeral.



If you want to know what’s in these notes, and how they ended up at that place in Paris, you might want to read this and that post.

If Bourguignon had to consult these notes at the Librairie Alain Brieux, it seems that there is no progress in the negotiations with Grothendieck’s children to make them public, or at least accessible.

Leave a Comment

Poly

Following up on the deep learning and toposes-post, I was planning to do something on the logic of neural networks.

Prepping for this I saw David Spivak’s paper Learner’s Languages doing exactly that, but in the more general setting of ‘learners’ (see also the deep learning post).

And then … I fell under the spell of $\mathbf{Poly}$.

Spivak is a story-telling talent. A long time ago I copied his short story (actually his abstract for a talk) “Presheaf, the cobbler” in the Children have always loved colimits-post.

Last week, he did post Poly makes me happy and smart on the blog of the Topos Institute, which is another great read.

If this is way too ‘fluffy’ for you, perhaps you should watch his talk Poly: a category of remarkable abundance.

If you like (applied) category theory and have some days to waste, you can binge-watch all 15 episodes of the Poly-course Polynomial Functors: A General Theory of Interaction.

If you are more the reading-type, the 273 pages of the Poly-book will also kill a good number of your living hours.

Personally, I have no great appetite for category theory, I prefer to digest it in homeopathic doses. And, I’m allergic to co-terminology.

So then, how to define $\mathbf{Poly}$ for the likes of me?

$\mathbf{Poly}$, you might have surmised, is a category. So, we need ‘objects’ and ‘morphisms’ between them.

Any set $A$ has a corresponding ‘representable functor’ sending a given set $S$ to the set of all maps from $A$ to $S$
\[
y^A~:~\mathbf{Sets} \rightarrow \mathbf{Sets} \qquad S \mapsto S^A=Maps(A,S) \]
This looks like a monomial in a variable $y$ ($y$ for Yoneda, of course), but does it work?

What is $y^1$, where $1$ stands for the one-element set $\{ \ast \}$? $Maps(1,S)=S$, so $y^1$ is the identity functor sending $S$ to $S$.

What is $y^0$, where $0$ is the empty set $\emptyset$? Well, for any set $S$ there is just one map $\emptyset \rightarrow S$, so $y^0$ is the constant functor sending any set $S$ to $1$. That is, $y^0=1$.

Going from monomials to polynomials we need an addition. We add such representable functors by taking disjoint unions (finite or infinite), that is
\[
\sum_{i \in I} y^{A_i}~:~\mathbf{Sets} \rightarrow \mathbf{Sets} \qquad S \mapsto \bigsqcup_{i \in I} Maps(A_i,S) \]
If all $A_i$ are equal (meaning, they have the same cardinality) we use the shorthand $Iy^A$ for this sum.

The objects in $\mathbf{Poly}$ are exactly these ‘polynomial functors’
\[
p = \sum_{i \in I} y^{p[i]} \]
with all $p[i] \in \mathbf{Sets}$. Remark that $p(1)=I$ as for any set $A$ there is just one map to $1$, that is $y^A(1) = Maps(A,1) = 1$, and we can write
\[
p = \sum_{i \in p(1)} y^{p[i]} \]
An object $p \in \mathbf{Poly}$ is thus described by the couple $(p(1),p[-])$ with $p(1)$ a set, and a functor $p[-] : p(1) \rightarrow \mathbf{Sets}$ where $p(1)$ is now a category with objects the elements of $p(1)$ and no morphisms apart from the identities.

We can depict $p$ by a trimmed down forest, Spivak calls it the corolla of $p$, where the tree roots are the elements of $p(1)$ and the tree with root $i \in p(1)$ has one branch from the root for any element in $p[i]$. The corolla of $p=y^2+2y+1$ looks like



If $M$ is an $m$-dimensional manifold, then you might view its tangent bundle $TM$ set-theoretically as the ‘corolla’ of the polynomial functor $M y^{\mathbb{R}^m}$, the tree-roots corresponding to the points of the manifold, and the branches to the different tangent vectors in these points.

Morphisms in $\mathbf{Poly}$ are a bit strange. For two polynomial functors $p=(p(1),p[-])$ and $q=(q(1),q[-])$ a map $p \rightarrow q$ in $\mathbf{Poly}$ consists of

  • a map $\phi_1 : p(1) \rightarrow q(1)$ on the tree-roots in the right direction, and
  • for any $i \in p(1)$ a map $q[\phi_1(i)] \rightarrow p[i]$ on the branches in the opposite direction

In our manifold/tangentbundle example, a morphism $My^{\mathbb{R}^m} \rightarrow y^1$ sends every point $p \in M$ to the unique root of $y^1$ and the unique branch in $y^1$ picks out a unique tangent-vector for every point of $M$. That is, vectorfields on $M$ are very special (smooth) morphisms $Mu^{\mathbb{R}^m} \rightarrow y^1$ in $\mathbf{Poly}$.

A smooth map between manifolds $M \rightarrow N$, does not determine a morphism $My^{\mathbb{R}^m} \rightarrow N y^{\mathbb{R}^n}$ in $\mathbf{Poly}$ because tangent vectors are pushed forward, not pulled back.

If instead we view the cotangent bundle $T^*M$ as the corolla of the polynomial functor $My^{\mathbb{R}^m}$, then everything works well.

But then, I promised not to use co-terminology…

Another time I hope to tell you how $\mathbf{Poly}$ helps us to understand the logic of learners.

Leave a Comment

Grothendieck talks

In 2017-18, the seminar Lectures grothendieckiennes took place at the ENS in Paris. Among the speakers were Alain Connes, Pierre Cartier, Laurent Lafforgue and Georges Maltsiniotis.

Olivia Caramello, who also contributed to the seminar, posts on her blog Around Toposes that the proceedings of this lectures series is now available from the SMF.

Olivia’s blogpost links also to the YouTube channel of the seminar. Several of these talks are well worth your time watching.

If you are at all interested in toposes and their history, and if you have 90 minutes to kill, I strongly recommend watching Colin McLarthy’s talk Grothendieck’s 1973 topos lectures:

In 1973, Grothendieck gave three lectures series at the Department of Mathematics of SUNY at Buffalo, the first on ‘Algebraic Geometry’, the second on ‘The Theory of Algebraic Groups’ and the third one on ‘Topos Theory’.

All of these Grothendieck talks were audio(!)-taped by John (Jack) Duskin, who kept and preserved them with the help of William Lawvere. They constitute more than 100 hours of rare recordings of Grothendieck.

This MathOverflow (soft) question links to this page stating:

“The copyright of all these recordings is that of the Department of Mathematics of SUNY at Buffalo to whose representatives, in particular Professors Emeritus Jack DUSKIN and Bill LAWVERE exceptional thanks are due both for the preservation and transmission of this historic archive, the only substantial archive of recordings of courses given by one of the greatest mathematicians of all time, whose work and ideas exercised arguably the most profound influence of any individual figure in shaping the mathematics of the second half od the 20th Century. The material which it is proposed to make available here, with their agreement, will form a mirror site to the principal site entitled “Grothendieck at Buffalo” (url: ).”

Sadly, the URL is still missing.

Fortunately, another answer links to the Grothendieck project Thèmes pour une Harmonie by Mateo Carmona. If you scroll down to the 1973-section, you’ll find there all of the recordings of these three Grothendieck series of talks!

To whet your appetite, here’s the first part of his talk on topos theory on April 4th, 1973:

For all subsequent recordings of his talks in the Topos Theory series on May 11th, May 18th, May 25th, May 30th, June 4th, June 6th, June 20th, June 27th, July 2nd, July 10th, July 11th and July 12th, please consult Mateo’s website (under section 1973).

Leave a Comment