Skip to content →

Category: number theory

Mathematics in times of internet

A few weeks more of (heavy) teaching ahead, and then I finally hope to start on a project, slumbering for way too long: to write a book for a broader audience.

Prepping for this I try to read most of the popular math-books hitting the market.

The latest two explore how the internet changed the way we discuss, learn and do mathematics. Think Math-Blogs, MathOverflow and Polymath.

‘Gina says’, Adventures in the Blogosphere String War



The ‘string wars’ started with the publication of the books by Peter Woit:

Not even wrong: the failure of string theory and the search for unity in physical law

and Lee Smolin:

The trouble with physics: the rise of string theory, the fall of a science, and what comes next.

In the summer of 2006, Gil Kalai got himself an extra gmail acount, invented the fictitious ‘Gina’ and started commenting (some would argue trolling) on blogs such as Peter Woit’s own Not Even Wring, John Baez and Co.’s the n-Category Cafe and Clifford Johnson’s Asymptotia.

Gil then copy-pasted Gina’s comments, and the replies they provoked, into a leaflet and put it on his own blog in June 2009: “Gina says”, Adventures in the Blogosphere String War.

Back then, it was fun to waste an afternoon re-reading all of this, and I wrote about it here:

Now here’s an idea (June 2009)

Gina says, continued (August 2009)

With only minor editing, and including some drawings by Gil’s daughter, these leaflets have now resurfaced as a book…?!

After more than 10 years I had hoped that Gil would have taken this test-case to say some smart things about the math-blogging scene and its potential to attract more people to mathematics, or whatever.

In 2009 I wrote:

“Having read the first 20 odd pages in full and skimmed the rest, two remarks : (1) it shouldn’t be too difficult to borrow this idea and make a much better book out of it and (2) it raises the question about copyrights on blog-comments…”

Closing the gap: the quest to understand prime numbers



I can hear you sigh, but no, this is not yet another prime number book.

In May 2013, Yitang Zhang startled the mathematical world by proving that there are infinitely many prime pairs, each no more than 70.000.000 apart.

Perhaps a small step towards the twin prime conjecture but it was the first time someone put a bound on this prime gap.

Vicky Neal‘s book tells the story of closing this gap. In less than a year the bound of 70.000.000 was brought down to 246.

If you’ve read all popular prime books, there are a handful of places in the book where you might sigh: ‘oh no, not that story again’, but by far the larger part of the book explains exciting results on prime number progressions, not found anywhere else.

Want to know about sieve methods?

Which results made Tim Gowers or Terry Tao famous?

What is Szemeredi’s theorem or the Hardy-Littlewood circle method?

Ever heard about the Elliot-Halberstam or the Erdos-Turan conjecture? The work by Tao on Erdos discrepancy problem or that of James Maynard (and Tao) on closing the prime gap?

Closing the gap is the book to read about all of this.

But it is much more.

It tells about the origins and successes of the Polymath project, and details the progress made by Polymath8 on closing the gap, it gives an insight into how mathematics is done, what role conferences, talks and research institutes a la Oberwolfach play, and more.

Looking for a gift for that niece of yours interested in maths? Look no further. Closing the gap is a great book!

One Comment

The latest on Mochizuki

Once in every six months there’s a flurry of online excitement about Mochizuki’s alleged proof of the abc-conjecture.

It seems to be that time of the year again.

The twitter-account of the ever optimistic @math_jin is probably the best source for (positive) news about IUT/ABC. He now announces the latest version of Yamashita’s ‘summary’ of Mochizuki’s proof:

Another informed source is Ed Frenkel. He sometimes uses his twitter-account @edfrenkel to broadcast Ivan Fesenko‘s enthusiasm.

Googling further, I stumbled upon an older (newspaper) article on the subject: das grosse ABC by Marlene Weiss, for which she got silver at the 2017 science journalism awards.

In case you prefer an English translation: The big ABC.

Here’s her opening paragraph:

“In a children’s story written by the Swiss author Peter Bichsel, a lonely man decides to invent his own language. He calls the table “carpet”, the chair “alarm clock”, the bed “picture”. At first he is enthusiastic about his idea and always thinks of new words, his sentences sound original and funny. But after a while, he begins to forget the old words.”

The article is less optimistic than other recent popular accounts of Mochizuki’s story, including:

Monumental proof to torment mathematicians for years to come in Nature by Davide Castelvecchi.

Hope Rekindled for Perplexing Proof in Quanta-magazine by Kevin Hartnett.

Baffling ABC maths proof now has impenetrable 300-page ‘summary’ in the New Scientist by Timothy Revell.

Marlene Weiss fears a sad ending:

“Table is called “carpet”, chair is called “alarm clock”, bed is called “picture”. In the story by Peter Bichsel, the lonely man ends up having so much trouble communicating with other people that he speaks only to himself. It is a very sad story.”

Perhaps things will turn out for the better, and we’ll hear about it sometime.

In six months, I’d say…

Leave a Comment

Life on Gaussian primes

At the moment I’m re-reading Siobhan Roberts’ biography of John Horton Conway, Genius at play – the curious mind of John Horton Conway.

In fact, I’m also re-reading Alexander Masters’ biography of Simon Norton, The genius in my basement – the biography of a happy man.

If you’re in for a suggestion, try to read these two books at about the same time. I believe it is beneficial to both stories.

Whatever. Sooner rather than later the topic of Conway’s game of life pops up.

Conway’s present pose is to yell whenever possible ‘I hate life!’. Problem seems to be that in book-indices in which his name is mentioned (and he makes a habit of checking them all) it is for his invention of the game of Life, and not for his greatest achievement (ihoo), the discovery of the surreal numbers.

If you have an hour to spare (btw. enjoyable), here are Siobhan Roberts and John Conway, giving a talk at Google: “On His LOVE/HATE Relationship with LIFE”

By synchronicity I encounter the game of life now wherever I look.

Today it materialised in following up on an old post by Richard Green on G+ on Gaussian primes.

As you know the Gaussian integers $\mathbb{Z}[i]$ have unique factorization and its irreducible elements are called Gaussian primes.

The units of $\mathbb{Z}[i]$ are $\{ \pm 1,\pm i \}$, so Gaussian primes appear in $4$- or $8$-tuples having the same distance from the origin, depending on whether a prime number $p$ remains prime in $\mathbb{Z}[i]$ or splits.

Here’s a nice picture of Gaussian primes, taken from Oliver Knill’s paper Some experiments in number theory

Note that the natural order of prime numbers is changed in the process (look at the orbits of $3$ and $5$ (or $13$ and $17$).

Because the lattice of Gaussian integers is rectangular we can look at the locations of all Gaussian primes as the living cell in the starting position on which to apply the rules of Life.

Here’s what happens after one move (left) and after three moves (right):

Knill has a page where you can watch life on Gaussian primes in action.

Even though the first generations drastically reduce the number of life spots, you will see that there remains enough action, at least close enough to the origin.

Knill has this conjecture:

When applying the game of life cellular automaton to the Gaussian primes, there is motion arbitrary far away from the origin.

What’s the point?

Well, this conjecture is equivalent to the twin prime conjecture for the Gaussian integers $\mathbb{Z}[i]$, which is formulated as

“there are infinitely pairs of Gaussian primes whose Euclidian distance is $\sqrt{2}$.”

2 Comments