Skip to content →

Category: math

NaNoWriMo (1)

Some weeks ago I did register to be a participant of NaNoWriMo 2016. It’s a belated new-year’s resolution.

When PS (pseudonymous sister), always eager to fill a 10 second silence at family dinners, asked

(PS) And Lieven, what are your resolutions for 2016?

she didn’t really expect an answer (for decades my generic reply has been: “I’m not into that kinda nonsense”)

(Me) I want to write a bit …

stunned silence

(PS) … Oh … good … you mean for work, more papers perhaps?

(Me) Not really, I hope to write a book for a larger audience.

(PS) Really? … Ok … fine … (appropriate silence) … Now, POB (pseudonymous other brother), what are your plans for 2016?

nanowrimo_2016_webbanner_participant

If you don’t know what NaNoWriMo is all about: the idea is to write a “book” (more like a ‘shitty first draft’ of half a book) consisting of 50.000 words in November.

We’re 5 days into the challenge, and I haven’t written a single word…

Part of the problem is that I’m in the French mountains, and believe me, there always more urgent or fun things to do here than to find a place of my own and start writing.

A more fundamental problem is that I cannot choose between possible book-projects.

Here’s one I will definitely not pursue:

“The Grothendieck heist”

“A group of hackers uses a weapon of Math destruction to convince Parisian police that a terrorist attack is imminent in the 6th arrondissement. By a cunning strategy they are then able to enter the police station and get to the white building behind it to obtain some of Grothendieck’s writings.

A few weeks later three lengthy articles hit the arXiv, claiming to contain a proof of the Riemann hypothesis, by partially dismantling topos theory.

Bi-annual conferences are organised around the globe aimed at understanding this weird new theory, etc. etc. (you get the general idea).

The papers are believed to have resulted from the Grothendieck heist. But then, similar raids are carried out in Princeton and in Cambridge UK and a sinister plan emerges… “

Funny as it may be to (ab)use a story to comment on the current state of affairs in mathematics, I’m not known to be the world’s most entertaining story teller, so I’d better leave the subject of math-thrillers to others.

Here’s another book-idea:

“The Bourbaki travel guide”

The idea is to hunt down places in Paris and in the rest of France which were important to Bourbaki, from his birth in 1934 until his death in 1968.

This includes institutions (IHP, ENS, …), residences, cafes they frequented, venues of Bourbaki meetings, references in La Tribu notices, etc.

This should lead to some nice Parisian walks (in and around the fifth arrondissement) and a couple of car-journeys through la France profonde.

Of course, also some of the posts I wrote on possible solutions of the riddles contained in Bourbaki’s wedding announcement and the avis de deces will be included.

Here the advantage is that I have already a good part of the raw material. Of course it still has to be followed up by in-situ research, unless I want to turn it into a ‘virtual math traveler ’s guide’ so that anyone can check out the places on G-maps rather than having to go to France.

I’m still undecided about this project. Is there a potential readership for this? Is it worth the effort? Can’t it wait until I retire and will spend even more time in France?

Here’s yet another idea:

“Mr. Yoneda takes the Tokyo-subway”

This is just a working title, others are “the shape of prime numbers”, or “schemes for hipsters”, or “toposes for fashionistas”, or …

This should be a work-out of the sga4hipsters meme. Is it really possible to explain schemes, stacks, Grothendieck topologies and toposes to a ‘general’ public?

At the moment I’m re-reading Eugenia Cheng’s “Cakes, custard and category theory”. As much as I admire her fluent writing style it is difficult for me to believe that someone who didn’t knew the basics of it before would get an adequate understanding of category theory after reading it.

It is often frustrating how few of mathematics there is in most popular maths books. Can’t one do better? Or is it just inherent in the format? Can one write a Cheng-style book replacing the recipes by more mathematics?

The main problem here is to find good ‘real-life’ analogies for standard mathematical concepts such as topological spaces, categories, sheaves etc.

The tentative working title is based on a trial text I wrote trying to explain Yoneda’s lemma by taking a subway-network as an example of a category. I’m thinking along similar lines to explain topological spaces via urban-wide wifi-networks, and so on.

But al this is just the beginning. I’ll consider this a success only if I can get as far as explaining the analogy between prime numbers and knots via etale fundamental groups…

If doable, I have no doubt it will be time well invested. My main problem here is finding an appropriate ‘voice’.

At first I wanted to go along with the hipster-gimmick and even learned some the appropriate lingo (you know, deck, fin, liquid etc.) but I don’t think it will work for me, and besides it would restrict the potential readers.

Then, I thought of writing it as a series of children’s stories. It might be fun to try to explain SGA4 to a (as yet virtual) grandchild. A bit like David Spivak’s short but funny text “Presheaf the cobbler”.

Once again, all suggestions or advice are welcome, either as a comment here or privately over email.

Perhaps, I’ll keep you informed while stumbling along NaNoWriMo.

At least I wrote 1000 words today…

Leave a Comment

from chocolate bars to constructivism

A fun way to teach first year students the different methods of proof is to play a game with chocolate bars, Chomp.

The players take turns to choose one chocolate block and “eat it”, together with all other blocks that are below it and to its right. There is a catch: the top left block contains poison, so the first player forced to eat it dies, that is, looses the game.

chocolate

Let’s prove some results about Chomp illustrating the strengths and weaknesses of different methods of proof.

[section_title text=”Direct proof”]

By far the most satisfying method is the ‘direct proof’. Once you understand it, the truth of the statement is unescapable.

Theorem 1: The first player to move has a winning strategy for a $2 \times n$ chocolate bar.

Here’s the winning move: you take the lower right block!

What can the other player do? She can bring the bar again in rectangular shape of strictly smaller size (in which case you eat again the lower right block), or she can eat more blocks from the lower row (but then, after her move, you eat as many blocks from the top row bringing the bar again in a shape in which the top row has exactly one more block than the lower one. You’re bound to win!

Sadly, it is not always possible to prove what you want in such a direct way. That’s why we invented another tactic:

[section_title text=”Proof by induction”]

A proof by induction is less satisfactory because it involves a lot more work, but still everyone considers it as a ‘fair’ method: it shows how to arrive at the solution, if only you had enough time and energy…

Theorem 2: Given any Chomp position, either the first player to move has a winning strategy or the second player has one.

A proof by induction relies on simplifying the situation at hand. Here, each move reduces the number of blocks in the chocolate bar, so we can apply induction on the number of blocks.

If there is just one block, it must contain poison and so the first player has to eat it and looses the game. That is, here the second player has a winning strategy and we indicate this by labelling the position with $0$. This one block position is the ‘basis’ for our induction.

Now, take a position $P$ for which you want to prove the claim. Look at all possible positions $X$ you get after one move. All these positions have strictly less blocks, so ‘by induction’ we may assume that the result is true for each one of them. So we can label each of these positions with $0$ if it is a second player win, or with $\ast$ if it is a first player win.

How to label $P$? Well, if all positions in $X$ are labeled $\ast$ we label $P$ with $0$ because it is a second player win. The first player has to move to a starred position (which is a first player win) and so the second player has a winning strategy from it (by moving to a $0$-position). If there is at least one position in $X$ labeled $0$ then we label $P$ with $\ast$. Indeed, the first player can move to the $0$-position and then has a winning strategy, playing second.

Here’s the chart of the first batch of positions:

But then, it may take your lifetime to work through the strategy for a complicated starting position…

What to do if neither a direct proof is found, nor a reduction argument allowing a proof by induction? Virtually all professional mathematicians have no objection whatsoever to resort to a very drastic tactic: proof by contradiction.

[section_title text=”Proof by contradiction”]

The law of the excluded third (or ‘tertium non datur’) says that for any proposition $P$ either $P$ or not $P$ is true. In 1927 David Hilbert stated that not much of mathematics would remain without the use of this rule:

[quote name=”David Hilbert”]To prohibit existence statements and the principle of excluded middle is tantamount to relinquishing the science of mathematics altogether.[/quote]

Theorem 3: The first player has a winning strategy for a rectangular starting position.

We will prove this by contradiction. That is, we will assume that it is false, that is, the first player has not a winning strategy, and derive a contradiction from it. Therefore $\neg \neg P$ is true which is equivalent to $P$ by the law of the excluded
middle.

If the first player does not have a winning strategy for that rectangular chocolate bar, the second player must have one by Theorem2. That is, for every possible first move the second player has a winning response.

Assume the first player eats the lower right block.

The second player must have some winning response to this. Whatever her move, the resulting position could have been obtained by the first player already after the first move.

So, the second player cannot have a winning strategy.

This strategy stealing argument is a cheap cheat. We have not the slightest idea of what the winning strategy for the first player is or how to find it.

Still, one shouldn’t stress this fact too much to first year students. They’ll have to work through plenty of proofs by contradiction in the years ahead…

[section_title text=”Accepting constructive mathematics?”]

Sooner or later in their career they will hear arguments in favour of ‘constructive mathematics’, which does not accept the law of the excluded third.

Andrej Bauer has described was happens next. They will go through the five stages people need to come to terms with life’s traumatising events: denial, anger, bargaining, depression, and finally acceptance.

His paper is just out in the Bulletin of the AMS Five stages of accepting constructive mathematics.

This paper is an extended version of a talk he gave at the IAS.

One Comment

Toposes alive and kicking at IHES

After 50 years, vivid interest in topos theory seems to have returned to one of the most prestigious research institutes, the IHES. Last november, there was the meeting Topos a l’IHES.

At the meeting, Celine Loozen filmed a documentary which is supposed to have as its title “Unifying Worlds”. Its very classy trailer is now on YouTube (via +David Roberts).

How did topos theory, a topic considered by most to be far too abstract to be useful to main stream mathematics, suddenly return in such force?

It always helps when a couple of world-class mathematicians become interest in the topic, for their own particular reasons. Clearly, the topic gathers considerable momentum if these people are all permanent members of the IHES.

A lot of geometric information is contained in the category of all sheaves on the geometric object. Topos theory offers a way to construct ‘geometries’ out of nothing, that is, out of arbitrary categories.

Take your favourite category $\mathbf{C}$, then “presheaves” on $\mathbf{C}$ are defined to be contravariant functors $\mathbf{C} \rightarrow \mathbf{Sets}$. For any Grothendieck topology on $\mathbf{C}$ one can then restrict to the sub-category of “sheaves” for this topology, and that’s your typical topos.

Alain Connes got interested in topos theory because he observed that even for the most trivial of categories, such as the monoid category with just one object and endomorphisms the multiplicative semigroup $\mathbb{N}_{\geq 1}^{\times}$, and taking the coarsest of all Grothendieck topologies, one gets interesting objects of baffling complexity.

One of the ‘invariants’ one can associate to a topos is its collection of “points”. Together with Katia Consani, Connes computed in Geometry of the Arithmetic Site that the collection of points of this simple presheaf topos is exactly the set of adele classes $\mathbb{Q}^{\ast}_+ \backslash \mathbb{A}^f_{\mathbb{Q}} / \hat{\mathbb{Z}}^{\ast}$.

Here’s what Connes himself said about this revelation (followed by an attempted translation):

——————————————————

(50.36)

And,in this example, we saw the wonderful notion of a topos, developed by Grothendieck.

It was sufficient for me to open SGA4, a book written at the beginning of the 60ties or the late fifties.

It was sufficient for me to open SGA4 to see that all the things that I needed were there, say, how to construct a cohomology on this site, how to develop things, how to see that the category of sheaves of Abelian groups is an Abelian category, having sufficient injective objects, and so on … all those things were there.

This is really remarkable, because what does it mean?

It means that the average mathematician says: “topos = a generalised topological space and I will never need to use such things. Well, there is the etale cohomology and I can use it to make sense of simply connected spaces and, bon, there’s the chrystaline cohomology, which is already a bit more complicated, but I will never need it, so I can safely ignore it.”

And (s)he puts the notion of a topos in a certain category of things which are generalisations of things, developed only to be generalisations…

But in fact, reality is completely different!

In our work with Katia Consani we saw not only that there is this epicyclic topos, but in fact, this epicyclic topos lies over a site, which we call the arithmetic site, which itself is of a delirious simplicity.

It relies only on the natural numbers, viewed multiplicatively.

That is, one takes a small category consisting of just one object, having this monoid as its endomorphisms, and one considers the corresponding topos.

This appears well … infantile, but nevertheless, this object conceils many wonderful things.

And we would have never discovered those things, if we hadn’t had the general notion of what a topos is, of what a point of a topos is, in terms of flat functors, etc. etc.

(52.27)

——————————————————-

Pierre Cartier has a very wide interest in mathematical theories, the wilder the better: Witt rings, motifs, cosmic Galois groups, toposes…

He must have been one of the first people to speak about toposes at the Bourbaki seminar. In february 1978 he gave the talk Logique, categories et faisceaux, d’apres F. Lawvere et M. Tierney (and dedicated to Grothendieck’s 50th birthday).

He also gave the opening lecture of the Topos a l’IHES conference.

In this fragment of an interview with Stephane Dugowson and Anatole Khelif in 2014 he plays down his own role in the development of topos theory, compared to his contributions in other fields, such as motifs.

——————————————————-

(46:24)

Well, I didn’t invest much time in topos theory.

Except, I once gave a talk at the Bourbaki seminar on the use of topos theory in logic, such as the independence of the axiom of choice, that is, on the idea of forcing.

But, it was just this talk, I didn’t do anything original in it.

Then there is nonstandard analysis, where one can formulate certain things in terms of topos theory. When I got interested in nonstandard analysis, I had this possible application of topos theory in mind.

At the moment when you have a nonstandard model of the integers or more generally of set theory, then one has two models of set theory, that is two different toposes, and then one obviously tries to compare them.

In that sense, I was completely aware of the fact that everything I was doing could be expressed in the language of toposes,or at least in the philosophy of toposes.

I haven’t made any important contributions in that theory, for me it merely remained a tool.

(47:49)

——————————————————-

Laurent Lafforgue says he spend hundredths and hundredths of hours talking to Olivia Caramello about topos theory.

She must have been quite convincing. The last couple of years Lafforgue is a fierce advocate of Caramello’s work.

Her basic idea is that the same topos can arise from two very different mathematical settings (that is, two different categories with Grothendieck topologies can have equivalent categories of sheaves).

The hope then is to translate results from one theory to the other, or as she expresses it, toposes can be used as “bridges” between different mathematical topics.

At the moment though, is seems a bit far fetched for this idea to be relevant to the Langlands programme.

Caramello and Lafforgue have just a paper out: Sur la dualit´e des topos et de leurs pr´esentations et ses applications : une introduction.

The paper is based on a lecture Lafforgue gave in April in Nantes. Here’s the video:

In the introduction they write:

“It is our conviction that the theory of toposes and their representations, with its essential and structural ambiguity, is destined to have an impact on mathematics comparable to the impact group theory has had from the moment, some decades after its discovery by Galois, the mathematical community began to understand it.”

Leave a Comment