Skip to content →

Category: web

The $\mathbb{F}_1$ World Seminar

For some time I knew it was in the making, now they are ready to launch it:

The $\mathbb{F}_1$ World Seminar, an online seminar dedicated to the “field with one element”, and its many connections to areas in mathematics such as arithmetic, geometry, representation theory and combinatorics. The organisers are Jaiung Jun, Oliver Lorscheid, Yuri Manin, Matt Szczesny, Koen Thas and Matt Young.

From the announcement:

“While the origins of the “$\mathbb{F}_1$-story” go back to attempts to transfer Weil’s proof of the Riemann Hypothesis from the function field case to that of number fields on one hand, and Tits’s Dream of realizing Weyl groups as the $\mathbb{F}_1$ points of algebraic groups on the other, the “$\mathbb{F}_1$” moniker has come to encompass a wide variety of phenomena and analogies spanning algebraic geometry, algebraic topology, arithmetic, combinatorics, representation theory, non-commutative geometry etc. It is therefore impossible to compile an exhaustive list of topics that might be discussed. The following is but a small sample of topics that may be covered:

Algebraic geometry in non-additive contexts – monoid schemes, lambda-schemes, blue schemes, semiring and hyperfield schemes, etc.
Arithmetic – connections with motives, non-archimedean and analytic geometry
Tropical geometry and geometric matroid theory
Algebraic topology – K-theory of monoid and other “non-additive” schemes/categories, higher Segal spaces
Representation theory – Hall algebras, degenerations of quantum groups, quivers
Combinatorics – finite field and incidence geometry, and various generalizations”

The seminar takes place on alternating Wednesdays from 15:00 PM – 16:00 PM European Standard Time (=GMT+1). There will be room for mathematical discussion after each lecture.

The first meeting takes place Wednesday, January 19th 2022. If you want to receive abstracts of the talks and their Zoom-links, you should sign up for the mailing list.

Perhaps I’ll start posting about $\mathbb{F}_1$ again, either here, or on the dormant $\mathbb{F}_1$ mathematics blog. (see this post for its history).

Leave a Comment

Huawei and French mathematics

Huawei, the Chinese telecom giant, appears to support (and divide) the French mathematical community.

I was surprised to see that Laurent Lafforgue’s affiliation recently changed from ‘IHES’ to ‘Huawei’, for example here as one of the organisers of the Lake Como conference on ‘Unifying themes in geometry’.

Judging from this short Huawei-clip (in French) he thoroughly enjoys his new position.

Huawei claims that ‘Three more winners of the highest mathematics award have now joined Huawei’:

Maxim Kontsevich, (IHES) Fields medal 1998

Pierre-Louis Lions (College de France) Fields medal 1994

Alessio Figalli (ETH) Fields medal 2018

These news-stories seem to have been G-translated from the Chinese, resulting in misspellings and perhaps other inaccuracies. Maxim’s research field is described as ‘kink theory’ (LoL).

Apart from luring away Fields medallist, Huawei set up last year the brand new Huawei Lagrange Research Center in the posh 7th arrondissement de Paris. (This ‘Lagrange Center’ is different from the Lagrange Institute in Paris devoted to astronomy and physics.)



It aims to host about 30 researchers in mathematics and computer science, giving them the opportunity to live in the ‘unique eco-system of Paris, having the largest group of mathematicians in the world, as well as the best universities’.

Last May, Michel Broué authored an open letter to the French mathematical community Dans un hotel particulier du 7eme arrondissement de Paris (in French). A G-translation of the final part of this open letter:

“In the context of a very insufficient research and development effort in France, and bleak prospects for our young researchers, it is tempting to welcome the creation of the Lagrange center. We welcome the rise of Chinese mathematics to the highest level, and we are obviously in favour of scientific cooperation with our Chinese colleagues.

But in view of the role played by Huawei in the repression in Xinjiang and potentially everywhere in China, we call on mathematicians and computer scientists already engaged to withdraw from this project. We ask all researchers not to participate in the activities of this center, as we ourselves are committed to doing.”

Among the mathematicians signing the letter are Pierre Cartier and Pierre Schapira.

To be continued.

One Comment

Bourbaki and Grothendieck-Serre

This time of year I’m usually in France, or at least I was before Covid. This might explain for my recent obsession with French math YouTube interviews.

Today’s first one is about Bourbaki’s golden years, the period between WW2 and 1975. Alain Connes is trying to get some anecdotes from Jean-Pierre Serre, Pierre Cartier, and Jacques Dixmier.

If you don’t have the time to sit through the whole thing, perhaps you might have a look at the discussion on whether or not to include categories in Bourbaki (starting at 51.40 into the clip).

Here are some other time-slots (typed on a qwerty keyboard, mes excuses) with some links.

  • 8.59 : Canular stupide (mort de Bourbaki)
  • 15.45 : recrutement de Koszul
  • 17.45 : recrutement de Grothendieck
  • 26.15 : influence de Serre
  • 28.05 : importance des ultra filtres
  • 35.35 : Meyer
  • 37.20 : faisceaux
  • 51.00 : Grothendieck
  • 51.40 : des categories, Gabriel-Demazure
  • 57.50 : lemme de Serre, theoreme de Weil
  • 1.03.20 : Chevalley vs. Godement
  • 1.05.26 : retraite Dieudonne
  • 1.07.05 : retraite
  • 1.10.00 : Weil vs. Serre-Borel
  • 1.13.50 : hierarchie Bourbaki
  • 1.20.22 : categories
  • 1.21.30 : Bourbaki, une secte?
  • 1.22.15 : Grothendieck C.N.R.S. 1984

The second one is an interview conducted by Alain Connes with Jean-Pierre Serre on the Grothendieck-Serre correspondence.

Again, if you don’t have the energy to sit through it all, perhaps I can tempt you with Serre’s reaction to Connes bringing up the subject of toposes (starting at 14.36 into the clip).

  • 2.10 : 2e these de Grothendieck: des faisceaux
  • 3.50 : Grothendieck -> Bourbaki
  • 6.46 : Tohoku
  • 8.00 : categorie des diagrammes
  • 9.10 : schemas et Krull
  • 10.50 : motifs
  • 11.50 : cohomologie etale
  • 14.05 : Weil
  • 14.36 : topos
  • 16.30 : Langlands
  • 19.40 : Grothendieck, cours d’ecologie
  • 24.20 : Dwork
  • 25.45 : Riemann-Roch
  • 29.30 : influence de Serre
  • 30.50 : fin de correspondence
  • 32.05 : pourquoi?
  • 33.10 : SGA 5
  • 34.50 : methode G. vs. theorie des nombres
  • 37.00 : paranoia
  • 37.15 : Grothendieck = centrale nucleaire
  • 38.30 : Clef des songes
  • 42.35 : 30.000 pages, probleme du mal
  • 44.25 : Ribenboim
  • 45.20 : Grothendieck a Paris, publication R et S
  • 48.00 : 50 ans IHES, lettre a Bourguignon
  • 50.46 : Laurant Lafforgue
  • 51.35 : Lasserre
  • 53.10 : l’humour
One Comment