Skip to content →

Category: featured

coalgebras and non-geometry

In this
series of posts I’ll try to make at least part of the recent
[Kontsevich-Soibelman paper](http://www.arxiv.org/abs/math.RA/0606241) a
bit more accessible to algebraists. In non-geometry, the algebras
corresponding to *smooth affine varieties* I’ll call **qurves** (note
that they are called **quasi-free algebras** by Cuntz & Quillen and
**formally smooth** by Kontsevich). By definition, a qurve in an affine
$\mathbb{C} $-algebra A having the lifting property for algebra
maps through nilpotent ideals (extending Grothendieck’s characterization
of smooth affine algebras in the commutative case). Examples of qurves
are : finite dimensional semi-simple algebras (for example, group
algebras $\mathbb{C} G $ of finite groups), coordinate rings of
smooth affine curves or a noncommutative mixture of both, skew-group
algebras $\mathbb{C}[X] \ast G $ whenever G is a finite group of
automorphisms of the affine curve X. These are Noetherian examples but
in general a qurve is quite far from being Noetherian. More typical
examples of qurves are : free algebras $\mathbb{C} \langle
x_1,\ldots,x_k \rangle $ and path algebras of finite quivers
$~\mathbb{C} Q $. Recall that a finite quiver Q s just a
directed graph and its path algebra is the vectorspace spanned by all
directed paths in Q with multiplication induced by concatenation of
paths. Out of these building blocks one readily constructs more
involved qurves via universal algebra operations such as (amalgamated)
free products, universal localizations etc. In this way, the
groupalgebra of the modular group $SL_2(\mathbb{Z}) $ (as well
as that of a congruence subgroup) is a qurve and one can mix groups with
finite groupactions on curves to get qurves like $ (\mathbb{C}[X]
\ast G) \ast_{\mathbb{C} H} \mathbb{C} M $ whenever H is a common
subgroup of the finite groups G and M. So we have a huge class of
qurve-examples obtained from mixing finite and arithmetic groups with
curves and quivers. Qurves can we used as *machines* generating
interesting $A_{\infty} $-categories. Let us start by recalling
some facts about finite closed subschemes of an affine smooth variety Y
in the commutative case. Let **fdcom** be the category of all finite
dimensional commutative $\mathbb{C} $-algebras with morphisms
being onto algebra morphisms, then the study of finite closed subschemes
of Y is essentially the study of the covariant functor **fdcom** –>
**sets** assigning to a f.d. commutative algebra S the set of all onto
algebra maps from $\mathbb{C}[Y] $ to S. S being a f.d.
commutative semilocal algebra is the direct sum of local factors $S
\simeq S_1 \oplus \ldots \oplus S_k $ where each factor has a
unique maximal ideal (a unique point in Y). Hence, our study reduces to
f.d. commutative images with support in a fixed point p of Y. But all
such quotients are also quotients of the completion of the local ring of
Y at p which (because Y is a smooth variety, say of dimension n) is
isomorphic to formal power series
$~\mathbb{C}[[x_1,\ldots,x_n]] $. So the local question, at any
point p of Y, reduces to finding all settings
$\mathbb{C}[[x_1,\ldots,x_n]] \twoheadrightarrow S
\twoheadrightarrow \mathbb{C} $ Now, we are going to do something
strange (at least to an algebraist), we’re going to take duals and
translate the above sequence into a coalgebra statement. Clearly, the
dual $S^{\ast} $ of any finite dimensional commutative algebra
is a finite dimensional cocommutative coalgebra. In particular
$\mathbb{C}^{\ast} \simeq \mathbb{C} $ where the
comultiplication makes 1 into a grouplike element, that is
$\Delta(1) = 1 \otimes 1 $. As long as the (co)algebra is
finite dimensional this duality works as expected : onto maps correspond
to inclusions, an ideal corresponds to a sub-coalgebra a sub-algebra
corresponds to a co-ideal, so in particular a local commutative algebra
corresponds to an pointed irreducible cocommutative coalgebra (a
coalgebra is said to be irreducible if any two non-zero subcoalgebras
have non-zero intersection, it is called simple if it has no non-zero
proper subcoalgebras and is called pointed if all its simple
subcoalgebras are one-dimensional. But what about infinite dimensional
algebras such as formal power series? Well, here the trick is not to
take all dual functions but only those linear functions whose kernel
contains a cofinite ideal (which brings us back to the good finite
dimensional setting). If one takes only those good linear functionals,
the ‘fancy’-dual $A^o $of an algebra A is indeed a coalgebra. On
the other hand, the full-dual of a coalgebra is always an algebra. So,
between commutative algebras and cocommutative coalgebras we have a
duality by associating to an algebra its fancy-dual and to a coalgebra
its full-dual (all this is explained in full detail in chapter VI of
Moss Sweedler’s book ‘Hopf algebras’). So, we can dualize the above pair
of onto maps to get coalgebra inclusions $\mathbb{C} \subset
S^{\ast} \subset U(\mathfrak{a}) $ where the rightmost coalgebra is
the coalgebra structure on the enveloping algebra of the Abelian Lie
algebra of dimension n (in which all Lie-elements are primitive, that is
$\Delta(x) = x \otimes 1 + 1 \otimes x $ and indeed we have that
$U(\mathfrak{a})^{\ast} \simeq \mathbb{C}[[x_1,\ldots,x_n]] $.
We have translated our local problem to finding all f.d. subcoalgebras
(containing the unique simple) of the enveloping algebra. But what is
the point of this translation? Well, we are not interested in the local
problem, but in the global problem, so we somehow have to **sum over all
points**. Now, on the algebra level that is a problem because the sum of
all local power series rings over all points is no longer an algebra,
whereas the direct sum of all pointed irreducible coalgebras $~B_Y
= \oplus_{p \in Y} U(\mathfrak{a}_p) $ is again a coalgebra! That
is, we have found a huge coalgebra (which we call the coalgebra of
‘distributions’ on Y) such that for every f.d. commutative algebra S we
have $Hom_{comm alg}(\mathbb{C}[Y],S) \simeq Hom_{cocomm
coalg}(S^{\ast},B_Y) $ Can we get Y back from this coalgebra of
districutions? Well, in a way, the points of Y correspond to the
group-like elements, and if g is the group-like corresponding to a point
p, we can recover the tangent-space at p back as the g-primitive
elements of the coalgebra of distributions, that is the elements such
that $\Delta(x) = x \otimes g + g \otimes x $. Observe that in
this commutative case, there are no **skew-primitives**, that is
elements such that $\Delta(x) = x \otimes g + h \otimes x $ for
different group-likes g and h. This is the coalgebra translation of the
fact that a f.d. semilocal commutative algebra is the direct sum of
local components. This is something that will definitely change if we
try to extend the above to the case of qurves (to be continued).

One Comment

football representation theory

Unless
you never touched a football in your life (that’s a _soccer-ball_
for those of you with an edu account) you will know that the world
championship in Germany starts tonight. In the wake of it, the field of
‘football-science’ is booming. The BBC runs its The
Science of Football-site
and did you know the following?

Research indicates that watching such a phenomenon is not
only exciting, it can be good for our health too. The Scottish
researchers found that there were 14% fewer psychiatric admissions in
the weeks after one World Cup than before it started.

But, would you believe that some of the best people in the field
(Kostant and Sternberg to name a few) have written papers on the
representation theory of a football? Perhaps this becomes more plausible
when you realize that a football has the same shape as the buckyball aka Carbon60.
Because the football (or buckyball) is a truncated icosahedron, its
symmetry group is $A_5$, the smallest of all simple groups and its
representations explain some physical properties of the buckyball. Some
of these papers are freely available and are an excellent read. In fact,
I’m thinking of using them in my course on representations of finite
groups, nxt year. Mathematics and the Buckyball by Fan
Chung and Schlomo Sternberg is a marvelous introduction to
representation theory. Among other things they explain how Schur’s
lemma, Frobenius reciprocity and Maschke’s theorem are used to count the
number of lines in the infra red buckyball spectrum! The Graph of the
Truncated Icosahedron and the Last Letter of Galois
by Bertram
Kostant explains the observation, first made by Galois in his last
letter to Chevalier, that $A_{5} = PSL_2(\mathbb{F}_5)$ embeds into
$PSL_{2}(\mathbb{F}_{11})$ and applies this to the buckyball.

In effect, the model we are proposing for C60is such that
each carbon atom can be labeled by an element of order 11 in PSl(2,11)
in such a fashion that the carbon bonds can be expressed in terms of the
group structure of PSl(2,11). It will be seen that the twelve pentagons
are exactly the intersections of M with the twelve Borel sub- groups of
PSl(2,11). (A Borel subgroup is any subgroup which is conjugate to the
group PSl(2,11) defined in (2).) In particular the pentagons are the
maximal sets of commuting elements in M. The most subtle point is the
natural existence of the hexagonal bonds. This will arise from a group
theoretic linkage of any element of order 11 in one Borel subgroup with
a uniquely defined element of order 11 in another Borel subgroup.

These authors consequently joined forces to write Groups and the
Buckyball
in which they give further applications of the Galois
embeddings to the electronic spectrum of the buckyball. Another
account can be found in the Master Thesis by Joris Mooij called The
vibrational spectrum of Buckminsterfullerene – An application of
symmetry reduction and computer algebra
. Plenty to read should
tonight’s match Germany-Costa Rica turn out to be boring…

Leave a Comment

why nag? (1)

Let us
take a hopeless problem, motivate why something like non-commutative
algebraic geometry might help to solve it, and verify whether this
promise is kept.

Suppose we want to know all solutions in invertible
matrices to the braid relation (or Yang-Baxter equation)

X Y X
= Y X Y

All such solutions (for varying size of matrices)
form an additive Abelian category \mathbf{rep}~B_3, so a big step forward would be to know all its
simple solutions (that is, those whose matrices cannot be brought in
upper triangular block form). A literature check shows that even this
task is far too ambitious. The best result to date is the classification
due to Imre Tuba and
Hans Wenzl
of simple solutions of which the matrix size is at most
5.

For fixed matrix size n, finding solutions in \mathbf{rep}~B_3 is the same as solving a system of n^2 cubic
polynomial relations in 2n^2
unknowns, which quickly becomes a daunting task. Algebraic geometry
tells us that all solutions, say \mathbf{rep}_n~B_3 form an affine closed subvariety of n^2-dimensional affine space. If we assume that \mathbf{rep}_n~B_3 is a smooth variety (that is, a manifold) and
if we know one solution explicitly, then we can use the tangent space in
this point to linearize the problem and to get at all solutions in a
neighborhood.

So, here is an idea : assume that \mathbf{rep}~B_3 itself would be a non-commutative manifold, then
we might linearize our problem by considering tangent spaces and obtain
new solutions out of already known ones. But, what is a non-commutative
manifold? Well, by the above we at least require that for all integers n
the commutative variety \mathbf{rep}_n~B_3 is a commutative manifold.

But, there
is still some redundancy in our problem : if (X,Y) is a
solution, then so is any conjugated pair (g^{-1}Xg,g^{-1}Yg) where g \in
GL_n is a basechange matrix. In categorical terms, we are only
interested in isomorphism classes of solutions. Again, if we fix the
size n of matrix-solutions, we consider the affine variety \mathbf{rep}_n~B_3 as a variety with a GL_n-action
and we like to classify the orbits of simple solutions. If \mathbf{rep}_n~B_3 is a manifold then the theory of Luna slices
provides a method, both to linearize the problem as well as to reduce
its complexity. Instead of the tangent space we consider the normal
space N to the GL_n-orbit
(in a suitable solution). On this affine space, the stabilizer subgroup
GL(\alpha) acts and there is a natural one-to-one
correspondence between GL_n-orbits
in \mathbf{rep}_n~B_3 and GL(\alpha)-orbits in the normal space N (at least in a
neighborhood of the solution).

So, here is a refinement of the
idea : we would like to view \mathbf{rep}~B_3 as a non-commutative manifold with a group action
given by the notion of isomorphism. Then, in order to get new isoclasses
of solutions from a constructed one we want to reduce the size of our
problem by considering a linearization (the normal space to the orbit)
and on it an easier isomorphism problem.

However, we immediately
encounter a problem : calculating ranks of Jacobians we discover that
already \mathbf{rep}_2~B_3 is not a smooth variety so there is not a
chance in the world that \mathbf{rep}~B_3 might be a useful non-commutative manifold.
Still, if (X,Y) is a
solution to the braid relation, then the matrix (XYX)^2
commutes with both X and Y.

If (X,Y) is a
simple solution, this means that after performing a basechange, C=(XYX)^2 becomes a scalar matrix, say \lambda^6 1_n. But then, (X_1,Y_1) =
(\lambda^{-1}X,\lambda^{-1}Y) is a solution to

XYX = YXY , (XYX)^2 = 1

and all such solutions form a
non-commutative closed subvariety, say \mathbf{rep}~\Gamma of \mathbf{rep}~B_3 and if we know all (isomorphism classes of)
simple solutions in \mathbf{rep}~\Gamma we have solved our problem as we just have to
bring in the additional scalar \lambda \in \mathbb{C}^*.

Here we strike gold : \mathbf{rep}~\Gamma is indeed a non-commutative manifold. This can
be seen by identifying \Gamma
with one of the most famous discrete infinite groups in mathematics :
the modular group PSL_2(\mathbb{Z}). The modular group acts by Mobius
transformations on the upper half plane and this action can be used to
write PSL_2(\mathbb{Z}) as the free group product \mathbb{Z}_2 \ast \mathbb{Z}_3. Finally, using
classical representation theory of finite groups it follows that indeed
all \mathbf{rep}_n~\Gamma are commutative manifolds (possibly having
many connected components)! So, let us try to linearize this problem by
looking at its non-commutative tangent space, if we can figure out what
this might be.

Here is another idea (or rather a dogma) : in the
world of non-commutative manifolds, the role of affine spaces is played
by \mathbf{rep}~Q the representations of finite quivers Q. A quiver
is just on oriented graph and a representation of it assigns to each
vertex a finite dimensional vector space and to each arrow a linear map
between the vertex-vector spaces. The notion of isomorphism in \mathbf{rep}~Q is of course induced by base change actions in all
of these vertex-vector spaces. (to be continued)

Leave a Comment