Skip to content →

Author: lievenlb

The Big Picture is non-commutative

Conway’s Big Picture consists of all pairs of rational numbers $M,\frac{g}{h}$ with $M > 0$ and $0 \leq \frac{g}{h} < 1$ with $(g,h)=1$. Recall from last time that $M,\frac{g}{h}$ stands for the lattice
\[
\mathbb{Z} (M \vec{e}_1 + \frac{g}{h} \vec{e}_2) \oplus \mathbb{Z} \vec{e}_2 \subset \mathbb{Q}^2 \]
and we associate to it the rational $2 \times 2$ matrix
\[
\alpha_{M,\frac{g}{h}} = \begin{bmatrix} M & \frac{g}{h} \\ 0 & 1 \end{bmatrix} \]

If $M$ is a natural number we write $M \frac{g}{h}$ and call the corresponding lattice number-like, if $g=0$ we drop the zero and write $M$.

The Big Picture carries a wealth of structures. Today, we will see that it can be factored as the product of Bruhat-Tits buildings for $GL_2(\mathbb{Q}_p)$, over all prime numbers $p$.

Here’s the factor-building for $p=2$, which is a $3$-valent tree:

To see this, define the distance between lattices to be
\[
d(M,\frac{g}{h}~|~N,\frac{i}{j}) = log~Det(q(\alpha_{M,\frac{g}{h}}.\alpha_{N,\frac{i}{j}}^{-1})) \]
where $q$ is the smallest strictly positive rational number such that $q(\alpha_{M,\frac{g}{h}}.\alpha_{N,\frac{i}{j}}^{-1}) \in GL_2(\mathbb{Z})$.

We turn the Big Picture into a (coloured) graph by drawing an edge (of colour $p$, for $p$ a prime number) between any two lattices distanced by $log(p)$.

\[
\xymatrix{M,\frac{g}{h} \ar@[red]@{-}[rr]|p & & N,\frac{i}{j}} \qquad~\text{iff}~\qquad d(M,\frac{g}{h}~|~N,\frac{i}{j})=log(p) \]

The $p$-coloured subgraph is $p+1$-valent.

The $p$-neighbours of the lattice $1 = \mathbb{Z} \vec{e}_1 \oplus \mathbb{Z} \vec{e}_2$ are precisely these $p+1$ lattices:

\[
p \qquad \text{and} \qquad \frac{1}{p},\frac{k}{p} \qquad \text{for} \qquad 0 \leq k < p \] And, multiplying the corresponding matrices with $\alpha_{M,\frac{g}{h}}$ tells us that the $p$-neighbours of $M,\frac{g}{h}$ are then these $p+1$ lattices: \[ pM,\frac{pg}{h}~mod~1 \qquad \text{and} \qquad \frac{M}{p},\frac{1}{p}(\frac{g}{h}+k)~mod~1 \qquad \text{for} \qquad 0 \leq k < p \] Here's part of the $2$-coloured neighbourhood of $1$

To check that the $p$-coloured subgraph is indeed the Bruhat-Tits building of $GL_2(\mathbb{Q}_p)$ it remains to see that it is a tree.

For this it is best to introduce $p+1$ operators on lattices

\[
p \ast \qquad \text{and} \qquad \frac{k}{p} \ast \qquad \text{for} \qquad 0 \leq k < p \] defined by left-multiplying $\alpha_{M,\frac{g}{h}}$ by the matrices \[ \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} \frac{1}{p} & \frac{k}{p} \\ 0 & 1 \end{bmatrix} \qquad \text{for} \qquad 0 \leq k < p \] The lattice $p \ast M,\frac{g}{h}$ lies closer to $1$ than $M,\frac{g}{h}$ (unless $M,\frac{g}{h}=M$ is a number) whereas the lattices $\frac{k}{p} \ast M,\frac{g}{h}$ lie further, so it suffices to show that the $p$ operators \[ \frac{0}{p} \ast,~\frac{1}{p} \ast,~\dots~,\frac{p-1}{p} \ast \] form a free non-commutative monoid.
This follows from the fact that the operator
\[
(\frac{k_n}{p} \ast) \circ \dots \circ (\frac{k_2}{p} \ast) \circ (\frac{k_1}{p} \ast) \]
is given by left-multiplication with the matrix
\[
\begin{bmatrix} \frac{1}{p^n} & \frac{k_1}{p^n}+\frac{k_2}{p^{n-1}}+\dots+\frac{k_n}{p} \\ 0 & 1 \end{bmatrix} \]
which determines the order in which the $k_i$ occur.

A lattice at distance $n log(p)$ from $1$ can be uniquely written as
\[
(\frac{k_{n-l}}{p} \ast) \circ \dots \circ (\frac{k_{l+1}}{p} \ast) \circ (p^l \ast) 1 \]
which gives us the unique path to it from $1$.

The Big Picture itself is then the product of these Bruhat-Tits trees over all prime numbers $p$. Decomposing the distance from $M,\frac{g}{h}$ to $1$ as
\[
d(M,\frac{g}{h}~|~1) = n_1 log(p_1) + \dots + n_k log(p_k) \]
will then allow us to find minimal paths from $1$ to $M,\frac{g}{h}$.

But we should be careful in drawing $2$-dimensional cells (or higher dimensional ones) in this ‘product’ of trees as the operators
\[
\frac{k}{p} \ast \qquad \text{and} \qquad \frac{l}{q} \ast \]
for different primes $p$ and $q$ do not commute, in general. The composition
\[
(\frac{k}{p} \ast) \circ (\frac{l}{q} \ast) \qquad \text{with matrix} \qquad \begin{bmatrix} \frac{1}{pq} & \frac{kq+l}{pq} \\ 0 & 1 \end{bmatrix} \]
has as numerator in the upper-right corner $0 \leq kq + l < pq$ and this number can be uniquely(!) written as \[ kq+l = up+v \qquad \text{with} \qquad 0 \leq u < q,~0 \leq v < p \] That is, there are unique operators $\frac{u}{q} \ast$ and $\frac{v}{p} \ast$ such that \[ (\frac{k}{p} \ast) \circ (\frac{l}{q} \ast) = (\frac{u}{q} \ast) \circ (\frac{v}{p} \ast) \] which determine the $2$-cells \[ \xymatrix{ \bullet \ar@[blue]@{-}[rr]^{\frac{u}{q} \ast} \ar@[red]@{-}[dd]_{\frac{v}{p} \ast} & & \bullet \ar@[red]@{-}[dd]^{\frac{k}{p} \ast} \\ & & \\ \bullet \ar@[blue]@{-}[rr]_{\frac{l}{q} \ast} & & \bullet} \] These give us the commutation relations between the free monoids of operators corresponding to different primes.
For the primes $2$ and $3$, relevant in the description of the Moonshine Picture, the commutation relations are

\[
(\frac{0}{2} \ast) \circ (\frac{0}{3} \ast) = (\frac{0}{3} \ast) \circ (\frac{0}{2} \ast), \quad
(\frac{0}{2} \ast) \circ (\frac{1}{3} \ast) = (\frac{0}{3} \ast) \circ (\frac{1}{2} \ast),
\quad
(\frac{0}{2} \ast) \circ (\frac{2}{3} \ast) = (\frac{1}{3} \ast) \circ (\frac{0}{2} \ast) \]

\[
(\frac{1}{2} \ast) \circ (\frac{0}{3} \ast) = (\frac{1}{3} \ast) \circ (\frac{1}{2} \ast), \quad
(\frac{1}{2} \ast) \circ (\frac{1}{3} \ast) = (\frac{2}{3} \ast) \circ (\frac{0}{2} \ast),
\quad
(\frac{1}{2} \ast) \circ (\frac{2}{3} \ast) = (\frac{2}{3} \ast) \circ (\frac{1}{2} \ast) \]

Leave a Comment

The defining property of 24

From Wikipedia on 24:

“$24$ is the only number whose divisors, namely $1, 2, 3, 4, 6, 8, 12, 24$, are exactly those numbers $n$ for which every invertible element of the commutative ring $\mathbb{Z}/n\mathbb{Z}$ is a square root of $1$. It follows that the multiplicative group $(\mathbb{Z}/24\mathbb{Z})^* = \{ \pm 1, \pm 5, \pm 7, \pm 11 \}$ is isomorphic to the additive group $(\mathbb{Z}/2\mathbb{Z})^3$. This fact plays a role in monstrous moonshine.”

Where did that come from?

In the original “Monstrous Moonshine” paper by John Conway and Simon Norton, section 3 starts with:

“It is a curious fact that the divisors $h$ of $24$ are precisely those numbers $h$ for which $x.y \equiv 1~(mod~h)$ implies $x \equiv y~(mod~h)$.”

and a bit further they even call this fact:

“our ‘defining property of $24$'”.

The proof is pretty straightforward.

We want all $h$ such that every unit in $\mathbb{Z}/h \mathbb{Z}$ has order two.

By the Chinese remainder theorem we only have to check this for prime powers dividing $h$.

$5$ is a unit of order $4$ in $\mathbb{Z}/16 \mathbb{Z}$.

$2$ is a unit of order $6$ in $\mathbb{Z}/ 9 \mathbb{Z}$.

A generator of the cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$ is a unit of order $p-1 > 2$ in $\mathbb{Z}/p \mathbb{Z}$, for any prime number $p \geq 5$.

This only leaves those $h$ dividing $2^3.3=24$.

But, what does it have to do with monstrous moonshine?

Moonshine assigns to elements of the Monster group $\mathbb{M}$ a specific subgroup of $SL_2(\mathbb{Q})$ containing a cofinite congruence subgroup

\[
\Gamma_0(N) = \{ \begin{bmatrix} a & b \\ cN & d \end{bmatrix}~|~a,b,c,d \in \mathbb{Z}, ad-Nbc = 1 \} \]

for some natural number $N = h.n$ where $n$ is the order of the monster-element, $h^2$ divides $N$ and … $h$ is a divisor of $24$.

To begin to understand how the defining property of $24$ is relevant in this, take any strictly positive rational number $M$ and any pair of coprime natural numbers $g < h$ and associate to $M \frac{g}{h}$ the matrix \[ \alpha_{M\frac{g}{h}} = \begin{bmatrix} M & \frac{g}{h} \\ 0 & 1 \end{bmatrix} \] We say that $\Gamma_0(N)$ fixes $M \frac{g}{h}$ if we have that
\[
\alpha_{M\frac{g}{h}} \Gamma_0(N) \alpha_{M\frac{g}{h}}^{-1} \subset SL_2(\mathbb{Z}) \]

For those in the know, $M \frac{g}{h}$ stands for the $2$-dimensional integral lattice
\[
\mathbb{Z} (M \vec{e}_1 + \frac{g}{h} \vec{e}_2) \oplus \mathbb{Z} \vec{e}_2 \]
and the condition tells that $\Gamma_0(N)$ preserves this lattice under base-change (right-multiplication).

In “Understanding groups like $\Gamma_0(N)$” Conway describes the groups appearing in monstrous moonshine as preserving specific finite sets of these lattices.

For this, it is crucial to determine all $M\frac{g}{h}$ fixed by $\Gamma_0(N)$.

\[
\alpha_{M\frac{g}{h}}.\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.\alpha_{M\frac{g}{h}}^{-1} = \begin{bmatrix} 1 & M \\ 0 & 1 \end{bmatrix} \]

so we must have that $M$ is a natural number, or that $M\frac{g}{h}$ is a number-like lattice, in Conway-speak.

\[
\alpha_{M\frac{g}{h}}.\begin{bmatrix} 1 & 0 \\ N & 1 \end{bmatrix}.\alpha_{M\frac{g}{h}}^{-1} = \begin{bmatrix} 1 + \frac{Ng}{Mh} & – \frac{Ng^2}{Mh^2} \\ \frac{N}{M} & 1 – \frac{Ng}{Mh} \end{bmatrix} \]

so $M$ divides $N$, $Mh$ divides $Ng$ and $Mh^2$ divides $Ng^2$. As $g$ and $h$ are coprime it follows that $Mh^2$ must divide $N$.

Now, for an arbitrary element of $\Gamma_0(N)$ we have

\[
\alpha_{M\frac{g}{h}}.\begin{bmatrix} a & b \\ cN & d \end{bmatrix}.\alpha_{M\frac{g}{h}}^{-1} = \begin{bmatrix} a + c \frac{Ng}{Mh} & Mb – c \frac{Ng^2}{Mh^2} – (a-d) \frac{g}{h} \\ c \frac{N}{M} & d – c \frac{Ng}{Mh} \end{bmatrix} \]
and using our divisibility requirements it follows that this matrix belongs to $SL_2(\mathbb{Z})$ if $a-d$ is divisible by $h$, that is if $a \equiv d~(mod~h)$.

We know that $ad-Nbc=1$ and that $h$ divides $N$, so $a.d \equiv 1~(mod~h)$, which implies $a \equiv d~(mod~h)$ if $h$ satisfies the defining property of $24$, that is, if $h$ divides $24$.

Concluding, $\Gamma_0(N)$ preserves exactly those lattices $M\frac{g}{h}$ for which
\[
1~|~M~|~\frac{N}{h^2}~\quad~\text{and}~\quad~h~|~24 \]

A first step towards figuring out the Moonshine Picture.

Leave a Comment

A Math(Art)y 2018

Last night, on our way to the fireworks in Antwerp, we walked by this definition of prime numbers:

“The numbers, only divisible by $1$ and itself are: $2,3$ and every number before or after a multiple of $6$, without their squares or products.” (Peter Wynen)

True enough.

And a lot more user-friendly than: the generators of the multiplicative monoid of all natural numbers which are $\pm 1$ modulo $6$ are the prime numbers, except for $2$ and $3$.

I wish you a 2018 full of math (and artistic) pleasures.

Leave a Comment