Skip to content →

Author: lievenlb

the monstrous moonshine picture – 1

We’re slowly closing in on the elusive moonshine picture, which is the subgraph of Conway’s Big Picture needed to describe all 171 moonshine groups.

About nine years ago I had a first go at it, drawing a tiny fraction of it, just enough to understand the 9 moonshine groups appearing in Duncan’s realization of McKay’s E(8)-observation.

Over the last weeks I’ve made enough doodles to feel confident that the full picture is within reach and is less unwieldy than I once feared it might be.

The moonshine picture only involves about 212 lattices and there are about 97 snakes crawling into it, the dimension of the largest cell being 3.

I write ‘about’ on purpose as I may have forgotten a few, or counted some twice as is likely to happen in all projects involving a few hundreds of things. I’ll come back to it later.

For now, I can only show you the monstrous moonshine painting, which is a work by the Chilean artist Magdalena Atria.

Here’s a close up:

It is a large scale painting made with plasticine, directly attached to the wall of the Alejandra Von Hartz gallery where it was exhibited in 2010.

What does it have to do with monstrous moonshine?

From the press release:

“In mathematics ‘monstrous moonshine’ is a term devised by John H. Conway and Simon P. Norton in 1979, used to describe the (then totally unexpected) connection between the monster group M and modular functions.

The term ‘monstrous moonshine’ was picked to convey the feelings from the bizarre relations between seemingly unrelated structures. The same spirit of connecting apparently unrelated situations, at times revealing deeper links and at times constructing them, permeates through Atria’s work in this exhibition.”

I was impressed by the first sentence until I read the Wikipedia article on monstrous moonshine which starts off with:

“In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Conway and Simon P. Norton in 1979.”

It appears that curators of art-exhibitions, and the intended public of their writings, are familiar with modular forms and functions, but fail to grasp the $j$-function.

When they speak about ‘modular forms’, I fear they’re thinking of something entirely different.

One Comment

Smullyan and the President’s sanity

Smullyan found himself in a very strange country indeed!

All the inhabitants of this country are completely truthful – they always tell you honestly what they believe, but the trouble is that about half of the population are totally mad, and all their beliefs are wrong!

The other half are totally sane and accurate in their judgments, all their beliefs are correct.

Smullyan felt honoured to be invited by the Presidential couple.

The President was the only one who said anything, and what he said was:

“My wife once said that I believe that she believes I am mad.”

What can be deduced about the President’s sanity, and that of his wife?

Reference: This is a minor adaptation of Problem 4.5 in Raymond Smullyan‘s book Logical Labyrinths.

Leave a Comment

A tetrahedral snake

A tetrahedral snake, sometimes called a Steinhaus snake, is a collection of tetrahedra, linked face to face.

Steinhaus showed in 1956 that the last tetrahedron in the snake can never be a translation of the first one. This is a consequence of the fact that the group generated by the four reflexions in the faces of a tetrahedron form the free product $C_2 \ast C_2 \ast C_2 \ast C_2$.

For a proof of this, see Stan Wagon’s book The Banach-Tarski paradox, starting at page 68.

The tetrahedral snake we will look at here is a snake in the Big Picture which we need to determine the moonshine group $(3|3)$ corresponding to conjugacy class 3C of the Monster.

The thread $(3|3)$ is the spine of the $(9|1)$-snake which involves the following lattices
\[
\xymatrix{& & 1 \frac{1}{3} \ar@[red]@{-}[dd] & & \\
& & & & \\
1 \ar@[red]@{-}[rr] & & 3 \ar@[red]@{-}[rr] \ar@[red]@{-}[dd] & & 1 \frac{2}{3} \\
& & & & \\
& & 9 & &} \]
It is best to look at the four extremal lattices as the vertices of a tetrahedron with the lattice $3$ corresponding to its point of gravity.

The congruence subgroup $\Gamma_0(9)$ fixes each of these lattices, and the arithmetic group $\Gamma_0(3|3)$ is the conjugate of $\Gamma_0(1)$
\[
\Gamma_0(3|3) = \{ \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix}.\begin{bmatrix} a & b \\ c & d \end{bmatrix}.\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & \frac{b}{3} \\ 3c & 1 \end{bmatrix}~|~ad-bc=1 \} \]
We know that $\Gamma_0(3|3)$ normalizes the subgroup $\Gamma_0(9)$ and we need to find the moonshine group $(3|3)$ which should have index $3$ in $\Gamma_0(3|3)$ and contain $\Gamma_0(9)$.

So, it is natural to consider the finite group $A=\Gamma_0(3|3)/\Gamma_9(0)$ which is generated by the co-sets of
\[
x = \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 1 \end{bmatrix} \qquad \text{and} \qquad y = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} \]
To determine this group we look at the action of it on the lattices in the $(9|1)$-snake. It will fix the central lattice $3$ but will move the other lattices.

Recall that it is best to associate to the lattice $M.\frac{g}{h}$ the matrix
\[
\alpha_{M,\frac{g}{h}} = \begin{bmatrix} M & \frac{g}{h} \\ 0 & 1 \end{bmatrix} \]
and then the action is given by right-multiplication.

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.x = \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 1 \end{bmatrix}.x = \begin{bmatrix} 1 & \frac{2}{3} \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & \frac{2}{3} \\ 0 & 1 \end{bmatrix}.x=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
That is, $x$ corresponds to a $3$-cycle $1 \rightarrow 1 \frac{1}{3} \rightarrow 1 \frac{2}{3} \rightarrow 1$ and fixes the lattice $9$ (so is rotation around the axis through the vertex $9$).

To compute the action of $y$ it is best to use an alternative description of the lattice, replacing the roles of the base-vectors $\vec{e}_1$ and $\vec{e}_2$. These latices are projectively equivalent
\[
\mathbb{Z} (M \vec{e}_1 + \frac{g}{h} \vec{e}_2) \oplus \mathbb{Z} \vec{e}_2 \quad \text{and} \quad \mathbb{Z} \vec{e}_1 \oplus \mathbb{Z} (\frac{g’}{h} \vec{e}_1 + \frac{1}{h^2M} \vec{e}_2) \]
where $g.g’ \equiv~1~(mod~h)$. So, we have equivalent descriptions of the lattices
\[
M,\frac{g}{h} = (\frac{g’}{h},\frac{1}{h^2M}) \quad \text{and} \quad M,0 = (0,\frac{1}{M}) \]
and we associate to the lattice in the second normal form the matrix
\[
\beta_{M,\frac{g}{h}} = \begin{bmatrix} 1 & 0 \\ \frac{g’}{h} & \frac{1}{h^2M} \end{bmatrix} \]
and then the action is again given by right-multiplication.

In the tetrahedral example we have
\[
1 = (0,\frac{1}{3}), \quad 1\frac{1}{3}=(\frac{1}{3},\frac{1}{9}), \quad 1\frac {2}{3}=(\frac{2}{3},\frac{1}{9}), \quad 9 = (0,\frac{1}{9}) \]
and
\[
\begin{bmatrix} 1 & 0 \\ \frac{1}{3} & \frac{1}{9} \end{bmatrix}.y = \begin{bmatrix} 1 & 0 \\ \frac{2}{3} & \frac{1}{9} \end{bmatrix},\quad
\begin{bmatrix} 1 & 0 \\ \frac{2}{3} & \frac{1}{9} \end{bmatrix}. y = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{9} \end{bmatrix}, \quad
\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{9} \end{bmatrix}. y = \begin{bmatrix} 1 & 0 \\ \frac{1}{3} & \frac{1}{9} \end{bmatrix} \]
That is, $y$ corresponds to the $3$-cycle $9 \rightarrow 1 \frac{1}{3} \rightarrow 1 \frac{2}{3} \rightarrow 9$ and fixes the lattice $1$ so is a rotation around the axis through $1$.

Clearly, these two rotations generate the full rotation-symmetry group of the tetrahedron
\[
\Gamma_0(3|3)/\Gamma_0(9) \simeq A_4 \]
which has a unique subgroup of index $3$ generated by the reflexions (rotations with angle $180^o$ around axis through midpoints of edges), generated by $x.y$ and $y.x$.

The moonshine group $(3|3)$ is therefore the subgroup generated by
\[
(3|3) = \langle \Gamma_0(9),\begin{bmatrix} 2 & \frac{1}{3} \\ 3 & 1 \end{bmatrix},\begin{bmatrix} 1 & \frac{1}{3} \\ 3 & 2 \end{bmatrix} \rangle \]

Leave a Comment