Skip to content →

Author: lievenlb

a monstrous unimodular lattice

An integral $n$-dimensional lattice $L$ is the set of all integral linear combinations
\[
L = \mathbb{Z} \lambda_1 \oplus \dots \oplus \mathbb{Z} \lambda_n \]
of base vectors $\{ \lambda_1,\dots,\lambda_n \}$ of $\mathbb{R}^n$, equipped with the usual (positive definite) inner product, satisfying
\[
(\lambda, \mu ) \in \mathbb{Z} \quad \text{for all $\lambda,\mu \in \mathbb{Z}$.} \]
But then, $L$ is contained in its dual lattice $L^* = Hom_{\mathbb{Z}}(L,\mathbb{Z})$, and if $L = L^*$ we say that $L$ is unimodular.

If all $(\lambda,\lambda) \in 2 \mathbb{Z}$, we say that $L$ is an even lattice. Even unimodular lattices (such as the $E_8$-lattice or the $24$ Niemeier lattices) are wonderful objects, but they can only live in dimensions $n$ which are multiples of $8$.

Just like the Conway group $Co_0 = .0$ is the group of rotations of the Leech lattice $\Lambda$, one might ask whether there is a very special lattice on which the Monster group $\mathbb{M}$ acts faithfully by rotations. If such a lattice exists, it must live in dimension at least $196883$.



Simon Norton (1952-2019) – Photo Credit

A first hint of such a lattice is in Conway’s original paper A simple construction for the Fischer-Griess monster group (but not in the corresponding chapter 29 of SPLAG).

Conway writes that Simon Norton showed ‘by a very simple computations that does not even require knowledge of the conjugacy classes, that any $198883$-dimensional representation of the Monster must support an invariant algebra’, which, after adding an identity element $1$, we now know as the $196884$-dimensional Griess algebra.

Further, on page 529, Conway writes:

Norton has shown that the lattice $L$ spanned by vectors of the form $1,t,t \ast t’$, where $t$ and $t’$ are transposition vectors, is closed under the algebra multiplication and integral with respect to the doubled inner product $2(u,v)$. The dual quotient $L^*/L$ is cyclic of order some power of $4$, and we believe that in fact $L$ is unimodular.

Here, transposition vectors correspond to transpositions in $\mathbb{M}$, that is, elements of conjugacy class $2A$.

I only learned about this lattice yesterday via the MathOverflow-post A lattice with Monster group symmetries by Adam P. Goucher.

In his post, Adam considers the $196883$-dimensional lattice $L’ = L \cap 1^{\perp}$ (which has $\mathbb{M}$ as its rotation symmetry group), and asks for the minimal norm (squared) of a lattice point, which he believes is $448$, and for the number of minimal vectors in the lattice, which might be
\[
2639459181687194563957260000000 = 9723946114200918600 \times 27143910000 \]
the number of oriented arcs in the Monster graph.

Here, the Monster graph has as its vertices the elements of $\mathbb{M}$ in conjugacy class $2A$ (which has $9723946114200918600$ elements) and with an edge between two vertices if their product in $\mathbb{M}$ again belongs to class $2A$, so the valency of the graph must be $27143910000$, as explained in that old post the monster graph and McKay’s observation.

When I asked Adam whether he had more information about his lattice, he kindly informed me that Borcherds told him that the Norton lattice $L$ didn’t turn out to be unimodular after all, but that a unimodular lattice with monstrous symmetry had been constructed by Scott Carnahan in the paper A Self-Dual Integral Form of the Moonshine Module.



Scott Carnahan – Photo Credit

The major steps (or better, the little bit of it I could grasp in this short time) in the construction of this unimodular $196884$-dimensional monstrous lattice might put a smile on your face if you are an affine scheme aficionado.

Already in his paper Vertex algebras, Kac-Moody algebras, and the Monster, Richard Borcherds described an integral form of any lattice vertex algebra. We’ll be interested in the lattice vertex algebra $V_{\Lambda}$ constructed from the Leech lattice $\Lambda$ and call its integral form $(V_{\Lambda})_{\mathbb{Z}}$.

One constructs the Moonshine module $V^{\sharp}$ from $V_{\Lambda}$ by a process called ‘cyclic orbifolding’, a generalisation of the original construction by Frenkel, Lepowsky and Meurman. In fact, there are now no less than 51 constructions of the moonshine module.

One starts with a fixed point free rotation $r_p$ of $\Lambda$ in $Co_0$ of prime order $p \in \{ 2,3,5,7,13 \}$, which one can lift to an automorphism $g_p$ of the vertex algebra $V_{\Lambda}$ of order $p$ giving an isomorphism $V_{\Lambda}/g_p \simeq V^{\sharp}$ of vertex operator algebras over $\mathbb{C}$.

For two distinct primes $p,p’ \in \{ 2,3,5,7,13 \}$ if $Co_0$ has an element of order $p.p’$ one can find one such $r_{pp’}$ such that $r_{pp’}^p=r_{p’}$ and $r_{pp’}^{p’}=r_p$, and one can lift $r_{pp’}$ to an automorphism $g_{pp’}$ of $V_{\Lambda}$ such that $V_{\Lambda}/g_{pp’} \simeq V_{\Lambda}$ as vertex operator algebras over $\mathbb{C}$.

Problem is that these lifts of automorphisms and the isomorphisms are not compatible with the integral form $(V_{\Lambda})_{\mathbb{Z}}$ of $V_{\Lambda}$, but ‘essentially’, they can be performed on
\[
(V_{\Lambda})_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{pp’},\zeta_{2pp’}] \]
where $\zeta_{2pp’}$ is a primitive $2pp’$-th root of unity. These then give a $\mathbb{Z}[\tfrac{1}{pp’},\zeta_{2pp’}]$-form on $V^{\sharp}$.

Next, one uses a lot of subgroup information about $\mathbb{M}$ to prove that these $\mathbb{Z}[\tfrac{1}{pp’},\zeta_{2pp’}]$-forms of $V^{\sharp}$ have $\mathbb{M}$ as their automorphism group.

Then, using all his for different triples in $\{ 2,3,5,7,13 \}$ one can glue and use faithfully flat descent to get an integral form $V^{\sharp}_{\mathbb{Z}}$ of the moonshine module with monstrous symmetry and such that the inner product on $V^{\sharp}_{\mathbb{Z}}$ is positive definite.

Finally, one looks at the weight $2$ subspace of $V^{\sharp}_{\mathbb{Z}}$ which gives us our Carnahan’s $196884$-dimensional unimodular lattice with monstrous symmetry!

Beautiful as this is, I guess it will be a heck of a project to deduce even the simplest of facts about this wonderful lattice from running through this construction.

For example, what is the minimal length of vectors? What is the number of minimal length vectors? And so on. All info you might have is very welcome.

One Comment

Escher’s stairs

Stairways feature prominently in several drawings by Maurits Cornelis (“Mauk”) Escher, for example in this lithograph print Relativity from 1953.



Relativity (M. C. Escher) – Photo Credit

From its Wikipedia page:

In the world of ‘Relativity’, there are three sources of gravity, each being orthogonal to the two others.
Each inhabitant lives in one of the gravity wells, where normal physical laws apply.
There are sixteen characters, spread between each gravity source, six in one and five each in the other two.
The apparent confusion of the lithograph print comes from the fact that the three gravity sources are depicted in the same space.
The structure has seven stairways, and each stairway can be used by people who belong to two different gravity sources.

Escher’s inspiration for “Relativity” (h/t Gerard Westendorp on Twitter) were his recollections of the staircases in his old secondary school in Arnhem, the Lorentz HBS.
The name comes from the Dutch physicist and Nobel prize winner Hendrik Antoon Lorentz who attended from 1866 to 1869, the “Hogere Burger School” in Arnhem, then at a different location (Willemsplein).



Stairways Lorentz HBS in Arnhem – Photo Credit

Between 1912 and 1918 Mauk Escher attended the Arnhem HBS, located in the Schoolstraat and build in 1904-05 by the architect Gerrit Versteeg. The school building is constructed around a monumental central stairway.



Arnhem HBS – G. Versteeg 1904-05 – Photo Credit



Plan HBS-Arnhem by G. Versteeg – Photo Credit

If you flip the picture below in the vertical direction, the two side-stairways become accessible to figures living in an opposite gravitation field.



Central staircase HBS Arnhem – Photo Credit

There’s an excellent post on the Arnhem-years of Mauk Escher by Pieter van der Kuil. Unfortunately (for most of you) in Dutch, but perhaps Google translate can do its magic here.

Leave a Comment

Bourbaki and Grothendieck-Serre

This time of year I’m usually in France, or at least I was before Covid. This might explain for my recent obsession with French math YouTube interviews.

Today’s first one is about Bourbaki’s golden years, the period between WW2 and 1975. Alain Connes is trying to get some anecdotes from Jean-Pierre Serre, Pierre Cartier, and Jacques Dixmier.

If you don’t have the time to sit through the whole thing, perhaps you might have a look at the discussion on whether or not to include categories in Bourbaki (starting at 51.40 into the clip).

Here are some other time-slots (typed on a qwerty keyboard, mes excuses) with some links.

  • 8.59 : Canular stupide (mort de Bourbaki)
  • 15.45 : recrutement de Koszul
  • 17.45 : recrutement de Grothendieck
  • 26.15 : influence de Serre
  • 28.05 : importance des ultra filtres
  • 35.35 : Meyer
  • 37.20 : faisceaux
  • 51.00 : Grothendieck
  • 51.40 : des categories, Gabriel-Demazure
  • 57.50 : lemme de Serre, theoreme de Weil
  • 1.03.20 : Chevalley vs. Godement
  • 1.05.26 : retraite Dieudonne
  • 1.07.05 : retraite
  • 1.10.00 : Weil vs. Serre-Borel
  • 1.13.50 : hierarchie Bourbaki
  • 1.20.22 : categories
  • 1.21.30 : Bourbaki, une secte?
  • 1.22.15 : Grothendieck C.N.R.S. 1984

The second one is an interview conducted by Alain Connes with Jean-Pierre Serre on the Grothendieck-Serre correspondence.

Again, if you don’t have the energy to sit through it all, perhaps I can tempt you with Serre’s reaction to Connes bringing up the subject of toposes (starting at 14.36 into the clip).

  • 2.10 : 2e these de Grothendieck: des faisceaux
  • 3.50 : Grothendieck -> Bourbaki
  • 6.46 : Tohoku
  • 8.00 : categorie des diagrammes
  • 9.10 : schemas et Krull
  • 10.50 : motifs
  • 11.50 : cohomologie etale
  • 14.05 : Weil
  • 14.36 : topos
  • 16.30 : Langlands
  • 19.40 : Grothendieck, cours d’ecologie
  • 24.20 : Dwork
  • 25.45 : Riemann-Roch
  • 29.30 : influence de Serre
  • 30.50 : fin de correspondence
  • 32.05 : pourquoi?
  • 33.10 : SGA 5
  • 34.50 : methode G. vs. theorie des nombres
  • 37.00 : paranoia
  • 37.15 : Grothendieck = centrale nucleaire
  • 38.30 : Clef des songes
  • 42.35 : 30.000 pages, probleme du mal
  • 44.25 : Ribenboim
  • 45.20 : Grothendieck a Paris, publication R et S
  • 48.00 : 50 ans IHES, lettre a Bourguignon
  • 50.46 : Laurant Lafforgue
  • 51.35 : Lasserre
  • 53.10 : l’humour
One Comment