Skip to content →

Author: lievenlb

teaching mathematics

Tracking an email address from a subscribers’ list to the local news bulletin of a tiny village somewhere in the French mountains, I ended up at the Maths department of Wellington College.

There I found the following partial explanation as to why I find it increasingly difficult to convey mathematics to students (needless to say I got my math-education in the abstract seventies…)

“Teaching Maths in 1950:

A logger sells a truckload of lumber for £ 100. His cost of production is 4/5 of the price. What is his profit?

Teaching Maths in 1960:

A logger sells a truckload of lumber for £ 100. His cost of production is 4/5 of the price, or £80. What is his profit?

Teaching Maths in 1970:

A logger exchanges a set A of lumber for a set M of money. The cardinality of set M is 100. Each element is worth one dollar. The set C the cost of production, contains 20 fewer elements than set M. What is the cardinality of the set P of profits?

Teaching Maths in 1980:

A logger sells a truckload of lumber for £ 100. His cost of production is £80 and his profit is £20. Your assignment: Underline the number 20.

Teaching Maths in 1990:

By cutting down beautiful forest trees, the logger makes £20. What do you think of this way of making a living? How did the forest birds and squirrels feel as the logger cut down the
trees? (There are no wrong answers.)

Teaching Maths in 2000:

Employer X is at loggerheads with his work force. He gives in to union pressure and awards a pay increase of 5% above inflation for the next five years.

Employer Y is at loggerheads with his work force. He refuses to negotiate and insists that salaries be governed by productivity and market forces.

Is there a third way to tackle this problem? (Yes or No).”

Leave a Comment

a 2006 chess puzzle anyone?

Noam Elkies is one of
those persons I seem to bump into (figuratively speaking) wherever my
interests take me. At the moment I’m reading (long overdue, I
know, I know) the excellent book Notes on
Fermat’s Last Theorem
by Alf Van der
Poorten
. On page 48, Elkies figures as an innocent bystander in the
1994 April fools joke e-perpetrated by
Henri Darmon
in the midst of all confusion about ‘the
gap’ in Wiles’ proof.

There has
been a really amazing development today on Fermat’s Last Theorem.
Noam Elkies has announced a counterexample, so that FLT is not true
after all! He spoke about this at the institute today. The solution to
Fermat that he constructs involves an incredibly large prime exponent
(larger than $10^{20}$), but it is constructive. The main idea seems to
be a kind of Heegner-point construction, combined with a really
ingenious descent for passing from the modular curves to the Fermat
curve. The really difficult part of the argument seems to be to show
that the field of definition of the solution (which, a priori, is some
ring class field of an imaginary quadratic field) actually descends to
$\\mathbb{Q}$. I wasn’t able to get all the details, which were
quite intricate…

Elkies is also an
excellent composer of chess problems. The next two problems he composed
as New Year’s greetings. The problem is : “How many shortest
sequences exists (with only white playing) to reach the given
position?”

$\\begin{position}
\\White(Kb5,Qd1,Rb1,Rh1,Nc3,Ne5,Bc1,Bf1,a2,b2,c4,d2,e2,f3,g3,h2)
\\end{position}{\\font\\mathbb{C}hess=chess10 \\showboard
}xc $

Here’s Elkies’ solution
:

There are 2004 sequences of the minimal length 12.
Each consists of the sin- gle move g3, the 3-move sequence
c4,Nc3,Rb1, and one of the three 8-move sequences
Nf3,Ne5,f3,Kf2,Ke3,Kd3(d4),Kc4(c5),Kb5. The move g3 may be played at
any point, and so contributes a factor of 12. If the King goes
through c5 then the 3- and 8-move sequences are independent, and can
be played in $\\binom{11}{3}$ orders. If the King goes through c4 then
the entire 8-move sequence must be played before the 3-move sequence
begins, so there are only two possibilities, depending on the choice
of Kd3 or Kd4. Hence the total count is $12(\\binom{11}{3}+2)=2004$ as
claimed.

A year later he composed the
problem

$\\begin{position}
\\White(Kh3,Qe4,Rc2,Rh1,Na4,Ng1,Bc1,Bf1,a2,b2,c3,d3,e2,f4,g2,h2)
\\end{position}{\\font\\mathbb{C}hess=chess10 \\showboard
}xd $

of which Elkies’ solution is
:

There are 2005 sequences of the minimal length 14.
This uses the happy coincidence $\\binom{14}{4}=1001$. Here White
plays the 4-move sequence f4,Kf2,Kg3,Kh3 and one of the five
sequences Nc3,Na4,c3,Qc2,Qe4,d3,Bd2(e3,f4,g5,h6),Rc1,Rc2,Bc1 of
length 10. If the Bishop goes to d2 or e3, the sequences are
independent, and can be played in $\\binom{14}{4}$ orders. Otherwise
the Bishop must return to c1 before White plays f4, so the entire
10-move sequence must be played before the 4-move sequence begins. Hence
the total count is $2 \\binom{14}{4}+3 =
2005$.

With just a few weeks remaining, anyone in for
a 2006 puzzle?

Leave a Comment

two TA tales

situation 1 :
one of the better first year students comes up to TA1’s office.
student : Um, can I ask you a question?
TA1 : Sure!

student : Well, um, about next year… will it be more of
this? … I mean, with proofs and stuff like that?
TA1 :
Heh? Well… eh… yes, I think so…
student : Oh,
in that case, I think I’m going to study something else…
situation 2 : TA2 is showing to second year (an exceptionally
good year) that $SL_2(\\mathbb{Z}_2) \\simeq S_3$. He defined the
groupmorphism, showed injectivity and surjectivity… So, we are
done! Are we? student1 : Surely that’s not enough!
TA2 : Heh?
student1 : Not every mono and epi has to be
an isomorphism.
TA2 : ???
student2 (to student1) :
But clearly it is in this case, stupid. Finite groups is a small
category! I’m not sure what story depresses me
more…

Leave a Comment