Skip to content →

Author: lievenlb

Chinese remainders and adele classes

Oystein Ore mentions the following puzzle from Brahma-Sphuta-Siddhanta (Brahma’s Correct System) by Brahmagupta :

An old woman goes to market and a horse steps on her basket and crashes the eggs. The rider offers to pay for the damages and asks her how many eggs she had brought. She does not remember the exact number, but when she had taken them out two at a time, there was one egg left. The same happened when she picked them out three, four, five, and six at a time, but when she took them seven at a time they came out even. What is the smallest number of eggs she could have had?

Here’s a similar problem from “Advanced Number Theory” by Harvey Cohn (( always, i wonder how one might ‘discreetly request’ these remainders… )) :

Exercise 5 : In a game for guessing a person’s age x, one discreetly requests three remainders : r1 when x is divided by 3, r2 when x is divided by 4, and r3 when x is divided by 5. Then x=40 r1 + 45 r2 + 36 r3 modulo 60.

Clearly, these problems are all examples of the Chinese Remainder Theorem.

Chinese because one of the first such problems was posed by Sunzi [Sun Tsu] (4th century AD)
in the book Sunzi Suanjing. (( according to ChinaPage the answer is contained in the song on the left hand side. ))

There are certain things whose number is unknown.
Repeatedly divided by 3, the remainder is 2;
by 5 the remainder is 3;
and by 7 the remainder is 2.
What will be the number?

The Chinese Remainder Theorem asserts that when $N=n_1n_2 \ldots n_k $ with the $n_i $ pairwise coprime, then there is an isomorphism of abelian groups $\mathbb{Z}/N \mathbb{Z} \simeq \mathbb{Z}/n_1 \mathbb{Z} \times \mathbb{Z}/n_2 \mathbb{Z} \times \ldots \times \mathbb{Z}/n_k \mathbb{Z} $. Equivalently, given coprime numbers $n_i $ one cal always solve the system of congruence identities

$\begin{cases} x \equiv a_1~(\text{mod}~n_1) \\ x \equiv a_2~(\text{mod}~n_2) \\ \vdots \\ x \equiv a_k~(\text{mod}~n_k) \end{cases} $

and all integer solutions are congruent to each other modulo $N=n_1 n_2 \ldots n_k $.

We will need this classical result to prove that
$\mathbb{Q}/\mathbb{Z} \simeq \mathcal{A}/\mathcal{R} $
where (as last time) $\mathcal{A} $ is the additive group of all adeles and where $\mathcal{R} $ is the subgroup $\prod_p \mathbb{Z}_p $ (i’ll drop all ‘hats’ from now on, so the p-adic numbers are $\mathbb{Q}_p = \hat{\mathbb{Q}}_p $ and the p-adic integers are denoted $\mathbb{Z}_p = \hat{\mathbb{Z}}_p $).

As we will have to do calculations with p-adic numbers, it is best to have them in a canonical form using digits. A system of digits $\mathbf{D} $ of $\mathbb{Q}_p $ consists of zero and a system of representatives of units of $\mathbb{Z}_p^* $ modulo $p \mathbb{Z}_p $. The most obvious choice of digits is $\mathbf{D} = { 0,1,2,\ldots,p-1 } $ which we will use today. (( later we will use another system of digits, the Teichmuller digits using $p-1 $-th root of unities in $\mathbb{Q}_p $. )) Fixing a set of digits $\mathbf{D} $, any p-adic number $a_p \in \mathbb{Q}_p $ can be expressed uniquely in the form

$a_p = \sum_{n=deg(a_p)}^{\infty} a_p(n) p^n $ with all ‘coefficients’ $a_p(n) \in \mathbf{D} $ and $deg(a_p) $ being the lowest p-power occurring in the description of $a_p $.

Recall that an adele is an element $a = (a_2,a_3,a_5,\ldots ) \in \prod_p \mathbb{Q}_p $ such that for almost all prime numbers p $a_p \in \mathbb{Z}_p $ (that is $deg(a_p) \geq 0 $). Denote the finite set of primes p such that $deg(a_p) < 0 $ with $\mathbf{P} = { p_1,\ldots,p_k } $ and let $d_i = -deg(a_{p_i}) $. Then, with $N=p_1^{d_1}p_2^{d_2} \ldots p_k^{d_k} $ we have that $N a_{p_i} \in \mathbb{Z}_{p_i} $. Observe that for all other prime numbers $q \notin \mathbf{P} $ we have $~(N,q)=1 $ and therefore $N $ is invertible in $\mathbb{Z}_q $.

Also $N = p_i^{d_i} K_i $ with $K_i \in \mathbb{Z}_{p_i}^* $. With respect to the system of digits $\mathbf{D} = { 0,1,\ldots,p-1 } $ we have

$N a_{p_i} = \underbrace{K_i \sum_{j=0}^{d_i-1} a_{p_i}(-d_i+j) p_i^j}_{= \alpha_i} + K_i \sum_{j \geq d_i} a_{p_i}(-d_i+j)p_i^j \in \mathbb{Z}_{p_i} $

Note that $\alpha_i \in \mathbb{Z} $ and the Chinese Remainder Theorem asserts the existence of an integral solution $M \in \mathbb{Z} $ to the system of congruences

$\begin{cases} M \equiv \alpha_1~\text{modulo}~p_1^{d_1} \\
M \equiv \alpha_2~\text{modulo}~p_2^{d_2} \\
\vdots \\ M \equiv \alpha_k~\text{modulo}~p_k^{d_k} \end{cases} $

But then, for all $1 \leq i \leq k $ we have $N a_{p_i} – M = p_i^{d_i} \sum_{j=0}^{\infty} b_i(j) p^j $ (with the $b_i(j) \in \mathbf{D} $) and therefore

$a_{p_i} – \frac{M}{N} = \frac{1}{K_i} \sum_{j=0}^{\infty} b_i(j) p^j \in \mathbb{Z}_{p_i} $

But for all other primes $q \notin \mathbf{P} $ we have that $\alpha_q \in \mathbb{Z}_q $ and that $N \in \mathbb{Z}_q^* $ whence for those primes we also have that $\alpha_q – \frac{M}{N} \in \mathbb{Z}_q $.

Finally, observe that the diagonal embedding of $\mathbb{Q} $ in $\prod_p \mathbb{Q}_p $ lies entirely in the adele ring $\mathcal{A} $ as a rational number has only finitely many primes appearing in its denominator. Hence, identifying $\mathbb{Q} \subset \mathcal{A} $ via the diagonal embedding we can rephrase the above as

$a – \frac{M}{N} \in \mathcal{R} = \prod_p \mathbb{Z}_p $

That is, any adele class $\mathcal{A}/\mathcal{R} $ has as a representant a rational number. But then, $\mathcal{A}/\mathcal{R} \simeq \mathbb{Q}/\mathbb{Z} $ which will allow us to give an adelic version of the Bost-Connes algebra!

Btw. there were 301 eggs.

One Comment

block google analytics cookies

When more than 200.000 websites are using google analytics, a one-man action proposed last time to de-activate GA on neverendingbooks is pretty useless. Perhaps a better alternative is :

When you use google analytics on your site, announce this and add a link to CustomizeGoogle BLOCK GOOGLE ANALYTICS COOKIES. Your visitors can then decide whether or not to block google analytics cookies only.

Or link to this post, as I’ll give a detailed step-by-step instruction so that even web-newbies can protect themselves agains google analytics stalking cookies.

1. Surf using a Firefox-clone Because CustomizeGoogle “is a Firefox extension that enhances Google search results by adding extra information (like links to Yahoo, Ask.com, MSN etc) and removing unwanted information (like ads and spam)” it only works on Firefox-like browsers. Screenshots below use Flock, the mac “social web browser”.

2. Go to CustomizeGoogle BLOCK GOOGLE ANALYTICS COOKIES and click on the Install Now! link (upper right)

3. A warning message will appear saying “Flock prevented this site from asking you to install software on your computer”. As we do want to install, click on the Edit Options button (on the left).

4. A pop-up window appears and click on the allow-button.

5. Click again on the Install Now! link from CustomizeGoogle. A pop-up will appear asking you to confirm installation of the extension. Click on the install-buttom (right below).

6. Installation complete! But you have to restart before you can use it. Click on the restart button and Flock will do it.

7. Select under Flock/Tools CustomizeGoogle Options.

8. A pane pops up with plenty of configurable options.

9. Select “Privacy” and mark the ‘Don’t send any cookies to GoogleAnalytics’ option.

10. Done! You can now surf to any of the 200.000+ google-analytics-powered sites without being stalked!

Using this feature makes you more anonymous. But your visit on a single webpage can still be logged. This way, both Google and the owner of the website knows that someone visited a webpage, but it’s difficult to track all pages you’re visiting. And it’s really really hard for Google to track that you visited both Website A and Website B.

2 Comments

adeles and ideles

Before we can even attempt to describe the adelic description of the Bost-Connes Hecke algebra and its symmetries, we’d probably better recall the construction and properties of adeles and ideles. Let’s start with the p-adic numbers $\hat{\mathbb{Z}}_p $ and its field of fractions $\hat{\mathbb{Q}}_p $. For p a prime number we can look at the finite rings $\mathbb{Z}/p^n \mathbb{Z} $ of all integer classes modulo $p^n $. If two numbers define the same element in $\mathbb{Z}/p^n\mathbb{Z} $ (meaning that their difference is a multiple of $p^n $), then they certainly define the same class in any $\mathbb{Z}/p^k \mathbb{Z} $ when $k \leq n $, so we have a sequence of ringmorphisms between finite rings

$ \ldots \rightarrow^{\phi_{n+1}} \mathbb{Z}/p^n \mathbb{Z} \rightarrow^{\phi_n} \mathbb{Z}/p^{n-1}\mathbb{Z} \rightarrow^{\phi_{n-1}} \ldots \rightarrow^{\phi_3} \mathbb{Z}/p^2\mathbb{Z} \rightarrow^{\phi_2} \mathbb{Z}/p\mathbb{Z} $

The ring of p-adic integers $\hat{\mathbb{Z}}_p $ can now be defined as the collection of all (infinite) sequences of elements $~(\ldots,x_n,x_{n-1},\ldots,x_2,x_1) $ with $x_i \in \mathbb{Z}/p^i\mathbb{Z} $ such that
$\phi_i(x_i) = x_{i-1} $ for all natural numbers $i $. Addition and multiplication are defined componentswise and as all the maps $\phi_i $ are ringmorphisms, this produces no compatibility problems.

One can put a topology on $\hat{\mathbb{Z}}_p $ making it into a compact ring. Here’s the trick : all components $\mathbb{Z}/p^n \mathbb{Z} $ are finite so they are compact if we equip these sets with the discrete topology (all subsets are opens). But then, Tychonov’s product theorem asserts that the product-space $\prod_n \mathbb{Z}/n \mathbb{Z} $ with the product topology is again a compact topological space. As $\hat{\mathbb{Z}}_p $ is a closed subset, it is compact too.

By construction, the ring $\hat{\mathbb{Z}}_p $ is a domain and hence has a field of fraction which we will denote by $\hat{\mathbb{Q}}_p $. These rings give the p-local information of the rational numbers $\mathbb{Q} $. We will now ‘glue together’ these local data over all possible prime numbers $p $ into adeles. So, forget the above infinite product used to define the p-adics, below we will work with another infinite product, one factor for each prime number.

The adeles $\mathcal{A} $ are the restricted product of the $\hat{\mathbb{Q}}_p $ over $\hat{\mathbb{Z}}_p $ for all prime numbers p. By ‘restricted’ we mean that elements of $\mathcal{A} $ are exactly those infinite vectors $a=(a_2,a_3,a_5,a_7,a_{11},\ldots ) = (a_p)_p \in \prod_p \hat{\mathbb{Q}}_p $ such that all but finitely of the components $a_p \in \hat{\mathbb{Z}}_p $. Addition and multiplication are defined component-wise and the restriction condition is compatible with both adition and multiplication. So, $\mathcal{A} $ is the adele ring. Note that most people call this $\mathcal{A} $ the finite Adeles as we didn’t consider infinite places, i will distinguish between the two notions by writing adeles resp. Adeles for the finite resp. the full blown version. The adele ring $\mathcal{A} $ has as a subring the infinite product $\mathcal{R} = \prod_p \hat{\mathbb{Z}}_p $. If you think of $\mathcal{A} $ as a version of $\mathbb{Q} $ then $\mathcal{R} $ corresponds to $\mathbb{Z} $ (and next time we will see that there is a lot more to this analogy).

The ideles are the group of invertible elements of the ring $\mathcal{A} $, that is, $\mathcal{I} = \mathcal{A}^{\ast} $. That s, an element is an infinite vector $i = (i_2,i_3,i_5,\ldots) = (i_p)_p $ with all $i_p \in \hat{\mathbb{Q}}_p^* $ and for all but finitely many primes we have that $i_p \in \hat{\mathbb{Z}}_p^* $.

As we will have to do explicit calculations with ideles and adeles we need to recall some facts about the structure of the unit groups $\hat{\mathbb{Z}}_p^* $ and $\hat{\mathbb{Q}}_p^* $. If we denote $U = \hat{\mathbb{Z}}_p^* $, then projecting it to the unit group of each of its components we get for each natural number n an exact sequence of groups

$1 \rightarrow U_n \rightarrow U \rightarrow (\mathbb{Z}/p^n \mathbb{Z})^* \rightarrow 1 $. In particular, we have that $U/U_1 \simeq (\mathbb{Z}/p\mathbb{Z})^* \simeq \mathbb{Z}/(p-1)\mathbb{Z} $ as the group of units of the finite field $\mathbb{F}_p $ is cyclic of order p-1. But then, the induced exact sequence of finite abalian groups below splits

$1 \rightarrow U_1/U_n \rightarrow U/U_n \rightarrow \mathbb{F}_p^* \rightarrow 1 $ and as the unit group $U = \underset{\leftarrow}{lim} U/U_n $ we deduce that $U = U_1 \times V $ where $\mathbb{F}_p^* \simeq V = { x \in U | x^{p-1}=1 } $ is the specified unique subgroup of $U $ of order p-1. All that remains is to determine the structure of $U_1 $. If $p \not= 2 $, take $\alpha = 1 + p \in U_1 – U_2 $ and let $\alpha_n \in U_1/U_n $ denote the image of $\alpha $, then one verifies that $\alpha_n $ is a cyclic generator of order $p^{n-1} $ of $U_1/U_n $.

But then, if we denote the isomorphism $\theta_n~:~\mathbb{Z}/p^{n-1} \mathbb{Z} \rightarrow U_1/U_n $ between the ADDITIVE group $\mathbb{Z}/p^{n-1} \mathbb{Z} $ and the MULTIPLICATIVE group $U_1/U_n $ by the map $z \mapsto \alpha_n^z $, then we have a compatible commutative diagram

[tex]\xymatrix{\mathbb{Z}/p^n \mathbb{Z} \ar[r]^{\theta_{n+1}} \ar[d] & U_1/U_{n+1} \ar[d] \\
\mathbb{Z}/p^{n-1} \mathbb{Z} \ar[r]^{\theta_n} & U_1/U_n}[/tex]

and as $U_1 = \underset{\leftarrow}{lim}~U_1/U_n $ this gives an isomorphism between the multiplicative group $U_1 $ and the additive group of $\hat{\mathbb{Z}}_p $. In case $p=2 $ we have to start with an element $\alpha \in U_2 – U_3 $ and repeat the above trick. Summarizing we have the following structural information about the unit group of p-adic integers

$\hat{\mathbb{Z}}_p^* \simeq \begin{cases} \hat{\mathbb{Z}}_{p,+} \times \mathbb{Z}/(p-1)\mathbb{Z}~(p \not= 2) \\ \hat{\mathbb{Z}}_{2,+} \times \mathbb{Z}/2 \mathbb{Z}~(p=2) \end{cases}$

Because every unit in $\hat{\mathbb{Q}}_p^* $ can be written as $p^n u $ with $u \in \hat{\mathbb{Z}}_p^* $ we deduce from this also the structure of the unit group of the p-adic field

$\hat{\mathbb{Q}}_p^* \simeq \begin{cases} \mathbb{Z} \times \hat{\mathbb{Z}}_{p,+} \times \mathbb{Z}/(p-1)\mathbb{Z}~(p \not= 2) \\ \mathbb{Z} \times \hat{\mathbb{Z}}_{2,+} \times \mathbb{Z}/2 \mathbb{Z}~(p=2) \end{cases} $

Right, now let us start to make the connection with the apparently abstract ringtheoretical post from last time where we introduced semigroup crystalline graded rings without explaining why we wanted that level of generality.

Consider the semigroup $\mathcal{I} \cap \mathcal{R} $, that is all ideles $i = (i_p)_p $ with all $i_p = p^{n_p} u_p $ with $u_p \in \hat{\mathbb{Z}}_p^* $ and $n_p \in \mathbb{N} $ with $n_p=0 $ for all but finitely many primes p. Then, we have an exact sequence of semigroups

$1 \rightarrow \mathcal{G} \rightarrow \mathcal{I} \cap \mathcal{R} \rightarrow^{\pi} \mathbb{N}^+_{\times} \rightarrow 1 $ where the map is defined (with above notation) $\pi(i) = \prod_p p^{n_p} $ and exactness follows from the above structural results when we take $\mathcal{G} = \prod_p \hat{\mathbb{Z}}_p^* $.

This gives a glimpse of where we are heading. Last time we identified the Bost-Connes Hecke algebra $\mathcal{H} $ as a bi-crystalline group graded algebra determined by a $\mathbb{N}^+_{\times} $-semigroup crystalline graded algebra over the group algebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $. Next, we will entend this construction starting from a $\mathcal{I} \cap \mathcal{R} $-semigroup crystalline graded algebra over the same group algebra. The upshot is that we will have a natural action by automorphisms of the group $\mathcal{G} $ on the Bost-Connes algebra. And… the group $\mathcal{G} = \prod_p \hat{\mathbb{Z}}_p^* $ is the Galois group of the cyclotomic field extension $\mathbb{Q}^{cyc} $!

But, in order to begin to understand this, we will need to brush up our rusty knowledge of algebraic number theory…

4 Comments